

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Engineering & Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

CERTIFICATE IN INFORMATION TECHNOLOGY (CIT JAN2012/S-FT)

EIT 1113: FUNDAMENTALS OF MATHEMATICS

END OF SEMESTER EXAMIANTION

SERIES: APRIL 2012 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FOUR questions in TWO sections A & B Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of THREE printed pages

Question One (20 Marks)

a)	Evaluate the following	
	${}^{10}C_4$	
	(i)	
	⁹ P ₃	
	(ii)	(4 marks)
b)	Solve the following equations:	
	$4x^2 - 6x - 10 = 0$	
	(i)	(3 marks)
	8x + 15y = 150	
	12x - 6y = 160	

(ii)

c) Calculate the value of $(1.002)^5$ correct to four places of decimal using the binomial theorem.

				(5 marks)
	[3 4]	∑ 2	0]	
	-4 3	0	1	
d)	Given that matrix $P = 1$ and matrix A	=	_	
-	$M = P^T \times AP$			
	Find matrix M where			(5 marks)

SECTION B (Answer Any Two Questions)

Question Two (20 marks)

1	1	0	[]	1	-2	-1]
1	0	-1	-	-3	2	1
1	1	2		1	0	-1

Given that A is the matrix

and B is matrix

b) Evaluate the following with respect to matrix A (i) Det A (ii) Co-factor matrix C (8)	
(i) Det A (3 (ii) Co-factor matrix C (8	
(ii) Co-factor matrix C (8	3 marks)
	3 marks)
(iii) The inverse of A i.e. A^{-1} (5)	5 marks)

Question Three (20 marks)

a) Express the following numbers to denary:

(i)	254.452 ₈	(4 marks)
(ii)	2163 ₈	(3 marks)
(iii)	1101.011 ₂	(3 marks)

b) Convert the following numbers into the indicated bases

(i)	(110111) to decimal	
(ii)	(2C) ₁₆ to octal	
(iii)	(726) ₁₀ to octal	(10 marks)

© 2012 - The Mombasa Polytechnic University College

(3 marks)

Question Four (20 marks)

The number of days the workers of a certain factory are absent in a year are as follows:

45	40	57	44	38	39	42	55	20	45
31	59	37	47	32	22	62	66	57	43
40	11	43	42	33	41	35	33	53	27
25	38	51	46	39	65	17	41	48	32
26	34	32	45	54	65	32	65	63	47

(i)	Prepare a frequency distribution table for grouped data, use classes i.e $(10 - 1)$	9, 20 – 29
	etc)	(6 marks)
(ii)	Calculate the mean	(6 marks)

(iii) Calculate the standard deviation

(8 marks)