THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Engineering and Technology
DEPARTMENT OF MEDICAL ENGINEERING

DIPLOMA IN MEDICAL ENGINEERING
DME 110/111P Y2S2

EHL 2211: ENGINEERING MATHEMATICS IV

SPECIAL/SUPPLEMENTARY EXAMINATIONS

SERIES: JANUARY/FEBRUARY 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B Maximum marks for each part of a question are clearly shown
This paper consists of FOUR printed pages

SECTION A (Compulsory)

Question 1

a) Solve the following simultaneous equation using Row reduction method
$2 x+3 y-4 z=26$
$x-5 y-3 z=-87$
$-7 x+2 y+6 z=12$
b) The experimental values relating centripetal force and radius for a mass travelling at constant velocity in a circle are given below

Force (N)	5	10	15	20	25	30	35	401
Radius cm	55	30	16	12	11	9	7	5

(i) Determine the regression line of force on radius
(ii) Determine the regression line of radius on force
(iii) Determine the force at a radius of 40 cm and the radius corresponding to a force of 32 newtons
(20 marks)

SECTION B (attempt any TWO questions)

Question 2

An electric circuit contains four resistant and three voltage sources. The arrangement is that E_{1}, R_{1} and R_{2} form the first loop. R_{2}, E_{2} and R_{3} forms the second loop and finally $R_{3} E_{3}$ and R_{4} forms the last loop. Using an appropriate illustration:
(i) Determine the matrix of the system of simultaneous equations formed by currents I1, I2 Ω
and I3 given that $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R} 4=1 \quad, \mathrm{E}_{1}=3 \mathrm{~V}, \mathrm{E}_{2}=2 \mathrm{~V}$ and $\mathrm{E}_{1}=1 \mathrm{~V} \quad$ (8 marks)
(ii) Determine the inverse of the matrix formed in (i) above hence use it or otherwise to solve for current $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}

Question 3

a) A box containing 74 brass washers, 86 steel washers and 40 aluminium washers. Three washers are drawn at random from the box without replacement. Determine the probability that:
i) All three are steel washers
ii) There is no aluminium washers drawn
iii) There are two brass and either a steel or aluminium washer
b) An electrical firm manufactures light bulb with a uniform distributed mean of 800 hours and a standard deviation of 40 hours. Determine the probability that a bulb;
i) Last between 770 hours and 920 hours
ii) Last for more than 880 hours
iii) Blows at 680 hours or below

Question 4

a) Solve the following simultaneous equation using cofactor method $x+y+z=3$
$x+2 y+3 z=4$
$x+4 y+9 z=6$
b) Given the matrices:

$$
P=\left(\begin{array}{ccc}
14 & 9 & 33 \\
13 & 11 & 36 \\
17 & 2 & 22
\end{array}\right) \quad Q=\left(\begin{array}{ccc}
170 & -132 & -39 \\
326 & -235 & -75 \\
-161 & 125 & 37
\end{array}\right)
$$

i) Determine PQ and QP

$$
\left(P^{t}\right)^{-1}=\left(P^{-1}\right)^{t}
$$

ii) Show that

Question 5

a) Solve the following simultaneous equations using crammers rule

$$
\begin{aligned}
& x+y+z=4 \\
& 2 x-3 y+4 z=33 \\
& 3 x-2 y-2 z=2
\end{aligned}
$$

