THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
DIPLOMA IN TECHNOLOGY TELECOMMUNICATION \& INFORMATION ENGINEERING

EET 2310: COMMUNICATION SYSTEMS II

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- A non-programmable scientific calculator

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are clearly shown.

This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question 1

a) (i) Explain any TWO factors that influence the distance covered by ground wave
(ii) With the aid of diagrams, describe duct propagation
(iii) A 100 m antenna is transmitting at 1.5 MHz by ground wave and has antenna current of 10 A rms. Determine the voltage received by a receiving antenna having a height of 3 m at a distance of 50 km away
b) (i) Explain the meaning of the term end effect as applied in aerials
(ii) Explain why the dipole is folded in the Yagi aerials
(iii) With the aid of a diagram, explain the operation of a three element Yagi array
marks)
c) (i) Explain any THREE problems associated with mismatched transmission lines
(ii) A high frequency transmission line of negligible loss has a characteristic impedance of 50 Ω
and is terminated by a load of impedance $100+\mathrm{j} 20$.
Calculate:
i. Voltage reflection coefficient
ii. Voltage standing wave ratio on the line

SECTION B (Answer any TWO questions from this section - 20 marks each)

Question 2

a) (i) State and explain any TWO reasons why waveguides are preferred to coaxial cables at microwave frequencies
λ
(ii) Draw an amplitude vs distance (wavelength) diagram to illustrate the formation of Standing waves in a lossless line terminated in a short circuit
b) (i) Define the term voltage reflection coefficient as applied to transmission lines

$$
\rho_{v}
$$

(ii) Show that the voltage reflection coefficient is given by;

$$
\begin{equation*}
\rho_{v}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \tag{6marks}
\end{equation*}
$$

where $\mathrm{Z}_{\mathrm{L}}=$ load impedance
$\mathrm{Z}_{\mathrm{o}}=$ characteristic impedance
c) A transmission line of $\mathrm{Z}_{0}=50{ }^{\Omega}$ is terminated by a $20-\mathrm{j} 20{ }^{\Omega}$. Use the smith chart to determine:
i. Voltage reflection coefficient
ii. Voltage standing wave ratio
iii. Length and position of a transformer to be connected to provide correct match (8marks)

Question 3

a) Define the following terms:
i. Effective radiated power (EIRP)
ii. Radiation resistance
b) (i) Explain with the aid of a diagram, how electromagnetic waves are radiated from a dipole
(ii) Given that the electric field strength of a current element of dl is given by:

$$
\frac{60 \prod l d l \sin \theta}{\lambda d} V / m
$$

, show that the radiation resistance of such an aerial is given

$$
R r=80 \Pi^{2}\left(\frac{d l}{\lambda}\right)^{2}
$$

by: ohms
(12 marks)
c) A monopole aerial is 25 m high and it is supplied with current of 100 A at 150 kHz . Assuming the current distribution on the aerial to be linear, calculate:
i. The power radiated by the aerial
ii. The field strength produced at ground level at appoint 80km

Question 4

a) Explain the following terms as applied to wave propagation
(i) Sporadic E
(ii) Fading
b) (i) State the TWO advantages and any ONE disadvantage of propagation of radio swaves as low frequencies
(ii) With the aid of a characteristic curve, explain how the received space signal strength varies with height
(iii) with the aid of diagram, describe tropospheric scatter propagation
c) At a particular time of the day, the E layer has a maximum electron density of 1.8×10^{11} electron $/ \mathrm{m}^{3}$ and it is at virtual height of 140 km . Calculate:
i. The critical frequency
ii. Maximum ground range

Take radius of earth $=6400 \mathrm{~km}$

Question 5

a) (i) Explain why the F layer exists even at night
(ii) State any ONE effects of each of the following ionospheric variations

- Sun spots
- Ionospheric storms
(iii) An aerial is mounted 200m above flat earth. The distance between the transmitting and Receive aerial is 30 km and the frequency is 180 MHz . Calculate the minimum height at which the received aerial should be mounted to receive the maximum field strength
marks)
b) (i) State any TWO differences between resonant and non resonant antennas
(ii) Explain the reasons for using antenna arrays systems
(iii) Draw a diagram to illustrate the following feed arrangements
- Cassegrain
- Offset
(iv) Explain any TWO disadvantages of the front feed arrangement

