



# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

## (A Constituent College of Jkuat)

# Faculty of Engineering and Technology

## DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

**DIPLOMA IN TECHNOLOGY** COMPUTER SCIENCE ENGINEERING

### **EES 3413: TELECOMMUNICATION PRINCIPLES**

END OF SEMESTER EXAMINATIONS

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

**Instructions to Candidates:** 

You should have the following for this examination

- Answer booklet
- A non-programmable scientific calculator

Answer question **ONE (COMPULSORY)** and any other **TWO** questions This paper consists of **FOUR** printed pages

### **Question 1 (Compulsory)**

- a) Distinguish between the following communication systems and state an example of each:
  - i) Point to point
  - ii) Broadcasting
- b) (i) State and explain any **TWO** applications of a communication system
  - (ii) State any **TWO** functions of each of the following communication bodies
    - (I) Communication Commission of Kenya (CCK)
    - (II) International Telecommunication Union (ITU)
  - (iii) Explain any **TWO** reasons why the optical fibre is gaining popularity as a transmission Media (10 marks)
- c) Draw a block diagram of a communication system and explain its operation (7 marks)
- d) A telecommunication system consists of **THREE** items connected as shown in fig 1

| amp 1 | Link 1 loss 30 dB | amp 2 | Link 2 loss 42 dB | amp 3 |
|-------|-------------------|-------|-------------------|-------|
| 23 dB |                   |       |                   | 16 dB |

Determine:

- i) Gain of amplifier 2 in dB if the power at its input is 0.316W and that at its output is 12.6W.
- ii) The output power (in watts) from amplifier 1
- iii) Overall gain or loss of the system (6 marks)
- e) State the frequency ranges of the following frequency bands and state an application of each
  - i) Ultra high frequency (UHF)
  - ii) High frequency (HF)

#### Question 2

- a) (i) State any **TWO** advantages of using decibels dB in telecommunication
  - (ii) Derive the expression for voltage gain in decibels when the two resistances at the Input and output are not matched

Fig 1

(4 marks)

(2 marks)

(iii) For the communication system block diagram shown in fig 2, calculate the output power

| input -5 dBm          | am <u>p 1</u>                                    | cable 1 loss 10 dB  | amp 2        | cable 2 loss 7 dB                        | amp 3         | output cable3 loss 13dF         |
|-----------------------|--------------------------------------------------|---------------------|--------------|------------------------------------------|---------------|---------------------------------|
|                       | 20 dB                                            |                     | 17 dB        |                                          | 18 dB         |                                 |
|                       |                                                  | —<br>Fiş            | g 2          |                                          |               | (10 marks)                      |
| b) (i) de<br>I)<br>II | Cardiod                                          | ng terms as app     | -            | nicrophones                              |               |                                 |
| • •                   | With the aid of a microphone                     | a well labeled d    | iagram, exj  | olain the operation                      | n of the car  | bon                             |
|                       | Suggest giving applications                      | a reason, the mo    | ost suitable | microphone for e                         | each of the   | following                       |
|                       |                                                  | proadcasting<br>pny |              |                                          |               | (10 marks)                      |
| Question              | ı <b>3</b>                                       |                     |              |                                          |               |                                 |
| i)<br>ii<br>iii       | Human sı<br>) Music<br>i) Video                  |                     |              | ng<br>/ing coil microph                  | one and m     | (3 marks)                       |
| s<br>ii) V            | peaker<br>Vith the aid of a                      | labeled diagram     | n, describe  | the operation of a<br>d in the loud spea | a moving c    | C                               |
| iv) I                 | Distinguish betw                                 | veen half duplex    | x and full d | uplex and give an                        | n example o   | of each (15 mark                |
| c) Deter<br>G<br>600  |                                                  | ratio of a transf   | former requ  | uired to match a 5                       | Ω<br>50 micro | ophone to a line o<br>(2 marks) |
| Question              | ı <b>4</b>                                       |                     |              |                                          |               |                                 |
| a) (i)                | Explain the fol<br>(a) Dead zon<br>(b) Drop outs | e                   |              |                                          |               |                                 |
| (ii)                  | State any <b>TWC</b>                             | effects of drop     | outs on vi   | deo reproduction                         |               |                                 |

- (ii) State any **TWO** effects of drop outs on video reproduction(iii) Explain why AC biasing is used in audio recording (6 marks)
- b) (i) Explain the **TWO** techniques used to increase the Band width in video recording on Magnetic tapes

- (ii) State any **TWO** advantages of solid state cameras over their tube counter parts
  - (4 marks)
- c) (i) State any **TWO** advantages of the use of compact disc (CDs) in recording audio Information as compared to magnetic tapes
  - (ii) With the aid of a labeled diagram, describe the operation of an optical reflective system Used in CD players (10 marks)

### Question 5

- a) (i) State any **TWO** reasons for the use of modulation in communication systems
  - (ii) Derive the expression for amplitude modulated wave given the carrier wave is  $v_c(t) = V_c Sin w_c t$ the modulating signal  $v_m(t) = V_m Sin w_m t$
  - (iii) Sketch the frequency spectrum for carrier which is amplitude modulated by a complex signal V V

|                                                                      | 1, 2                                 |  |  |
|----------------------------------------------------------------------|--------------------------------------|--|--|
| Consisting of three frequencies $f_1$ , $f_2$ and $f_3$ of amplitude | and $V_3$ assuming $V_1 > V_2 > V_3$ |  |  |
| (iv) Determine the expression for the Band width                     | (8 marks)                            |  |  |

- b) (i) An amplitude modulated (AM) radio transmitter gives an output of 50kw when modulated to a Depth of 80%, determine.
  - I) The power of the un modulated carrier
  - II) The power in the sidebands
  - (ii) Sketch the AM wave when the modulation depth is 50% (6 marks)
- c) (i) State any **TWO** advantages of FM over AM
  - (ii) Explain why guard bands are used in communication channels
  - (iii) An FM signal has a centre frequency of 103MHz and highest frequency of 103.045MHz when Modulated by a signal frequency of 15KHz. The rated system deviation is 75 KHz.
  - (a) The frequency deviation
  - (b) Modulation index

(6 marks)