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Question 1 (Compulsory) – 30 Marks

a)
i)   Determine by double integral the area bounded by 

,43 xxy 
  y= 0, x= 0 and x = 4 (3 marks)

ii) Evaluate the following integrals
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(4 marks)

(b) 
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(3 marks)

b) Evaluate 

~~
drF
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 where 
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given that c is the rectangle in the x-y plane
bounded by y = 0, x = a, y = b and x= 0  (7 marks)

c)
i) Sketch the following functions for at least 3 periods and state whether the function are

odd, even or neither.  Give reason for your answer.

(a)  
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(2 marks)

(b)  
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(2 marks)

ii) Determine the Fourier series for the periodic function 
 tf

defined by
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(9 marks)
Question 2

a) Determine  the volume of a solid bounded by the planes x = 0, z = 0, x = 2, 
12  xy

and the surface

22 yxz 
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b) The periodic wave function in fig. 1 below represents an electromotive force in an electric
circuit

i) Sate whether the function is ODD, EVEN or NEITHE  VV   resulting Fourier series.

ii) Using a suitable substitution and series in b(i), show that 
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(1 mark)
Question 3

a) Determine the volume bounded by the cylinder 
422  yx

and the planes 
3 zy

and z = 0 (10 marks)

b) The function 
 tf

is symmetrical about (0,0) and is defined by
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i) Sketch the function 
 tf

 over the interval 
  t

 

ii) Determine the half-range Fourier series for the function 
 tf

iii) By evaluating 
 tf

and its half-range Fourier series deduce that 
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(10 marks) 
Question 4 

a) Evaluate the following integrals
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(4 marks)
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b) Verify Green’s theorem in the plane for 

  dyxdxyxy 22 
where C is the curve closed by

the region bounded by 
xy 

and 

2xy 
(6 marks)

c) (i)  If 
  yxyxf  2,

is defined on a rectangular region 

21,10  yx
, show that 
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(4 marks)

(ii) Find the area integral 
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where 
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(6 marks)

Question 5

a) State and proof Green’s theorem for a simple region (9 marks)

b) Given that D is a square defined by 
11,11 21  xx

and F1and F2 are defined on 


by 
  1

2211 , xexxxF 
and

  2
211 ,, xexxxF 

, proof Green’s theorem in the given region.
                (11 marks)
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