

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology in Conjunction with Kenya Institute of Highways and Building & Technology (KIHBT)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

HIGHER DIPLOMA IN ELECTRICAL POWER ENGINEERING

EEP 3304 : POWER SYSTEMS ENGINEERING III

SEMESTER EXAMINATIONS

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- *Non-programmable calculator*

Answer Question **ONE** (**COMPULSORY**) in **section I** and any other **TWO** questions from **Section II** This paper consists of **THREE** printed pages

SECTION I (compulsory – 30 marks)

Question 1

a) (i) State conditions necessary for operating generators in parallel (4 marks)

- (ii) Explain the effect on generator output KW on varying
 - (i) Prime mover speed
 - (ii) Power factor

(iii) Excitation

(6 marks)

b) Two 3phase 6.6kv star connected alternators supply a load of 3.0 MW at 0.8lag in a 1:2 ratio. The synchronous impedance per phase of machine X = (0.8 + j30) ohms and that of Y = (0.6 + j14) ohms. The excitation of machine X is adjusted so that it delivers 200A at a lagging p.f.

Determine for each machine

- (i) Current
- (ii) P.f

(12 marks)

- c) Briefly explain the following compensation methods of long overhead lines
 - (i) Series
 - (ii) Shunt
 - (iii) Synchro
 - (iv) Transformer tap

(8 marks)

SECTION II (Answer any **TWO** questions – 40 marks)

Question 2

a) List any **THREE** factors that affect sag

(3 marks)

- b) A conductor hangs in the form of a catenary $Y = C \cosh x/c$ where c = 1525m. The span is 305m and conductor weighs 1.49kg/m. Calculate:
 - (i) Length of conductor
 - (ii) Sag
 - (iii) Maximum and minimum values of tension using the catenary method

(17 marks)

Question 3

- a) Draw the equivalent circuit and the phasor diagrams for a nominal 'T' method of line representation (5 marks)
- b) A three phase 50HZ overheadline is 100km long. The phase values of resistance inductance and μF

capacitance per km are 0.15ohm; 1.2mH; 0.008 $\,$. The line supplies a load of 70MW; 0.8 lag at

- 132KV. Using the nominal method, calculate:
- (i) Line efficiency

	(ii)	Total line loss	(15 marks)	
Question 4				
a)	State t	he main reason for 'short circuit fault level' studies	(3 marks)	
b)	For th	For the system below, take 40MVA and 6.6 KV as base ratings and calculate for a 3phase balance fault		
	(i) (ii)	Short circuit current and MVA fault level at F_1 Short circuit current and MVA fault level at F_2	(17 marks)	
Question 5				
a)	-	are arc extinction process for the following circuit breakers:		
	(i) (ii)	Bulk oil; plain break Bulk oil; explosion pot	(6 1)	
1.	(iii)	SF ₆ Gas blast	(6 marks)	
b)		aid of a breaker oscillogram indicate the following		
	(i) (ii)	Peak restriking voltage Recovery voltage		
	(iii) (iv)	Arc voltage Current zero	(10 marks)	
c)	State:		•	
	(i)	TWO methods used for voltage equalization across circuit breaker poles		
©	© 2011 - The Mombasa Polytechnic University College Page 3			

(ii)	The TWO major operational disadvantages of the SF6 circuit breaker	(4 marks)