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Question One

a) (i) Differentiate from first principle 
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(ii) Show that the derivative of 
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b) Differentiate the following functions with respect to x
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(ii)
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c) If 
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Question Two

a) (i)  Derive the Laplace Transforms of the function 
  tetf t 3cos2

from first principles.

(ii) Determine the inverse Laplace Transforms of the following
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(13 marks)

b) Charge in a certain circuit is described by a different equation of the type 

teq
dt

qd t 3sin1029 5
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Use  Laplace  Transforms  to  show  that  
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per second (6 marks)

Question Three

a) Evaluate the following integrals 
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(i)
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(11 marks)

b) (i)  Use the substitution 
tanax 

to show that 
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(iii) If the work done W in moving a certain body from 
axax 2

 is given by 
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(9 marks)
Question Four

a) (i)  Solve completely the following differential equation

      21211 xyx
dx

dy
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      (ii)  State the necessary and sufficient condition for an equation 
0 NdyMdx

to be exact hence 
             solve the following equation
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(10 marks)

b) An e.m.f of Eo = 40 volts, a resistor of R = 30 Ohms, inductor of L = 50mH and a capacitor of
250mF are connected in series.  Initially the circuit is dead:

(I) Form a differential equation involving
(i) The current i and time t
(ii) The charge q and time t
(iii) Solve for q and I given that i(o) = q(o)=0

(II) Derive the expressions for the voltages across 
(i) Inductor L
(ii) Capacitor C
(iii) Resistance R (10 marks)

Question Five
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a) The instantaneous current i passing through a circuit of resistance R and inductance L satisfies the

differential equation 

tVRi
dt

di
L O cos

. Where t is time and Vo and 


 are constant.  Show that
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(10 marks)

b) Solve the differential equation  
ttyD 4cos122cos16)4( 2 
 using the D-operator method given

that 
oyt  ,0
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dt
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. (10 marks)

© 2012 – The Mombasa Polytechnic University College Page 4


