THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology in Conjunction with Kenya
Institute of Highways and Building \& Technology (KIHBT)
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING HIGHER DIPLOMA IN ELECTRICAL \& ELECTRONIC ENGINEERING

EEA 3101: ENGINEERING MATHEMATICS I
END OF SEMESTER EXAMINATION

SERIES: APRIL 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Mathematical table/Scientific Calculator
- Drawing Instruments
- A bridged Laplace Transforms Table

This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One

$$
y=\frac{1}{\sqrt{x}}
$$

a) (i) Differentiate from first principle

$$
y=1 n\left[x+\sqrt{x^{2}+a^{2}}\right] \text { is } \frac{1}{\sqrt{x^{2}+a^{2}}}
$$

(ii) Show that the derivative of
b) Differentiate the following functions with respect to x

$$
y=6^{x}
$$

(i)

$$
x^{3}+y^{3}-3 a x y=0
$$

(ii)

$$
a x^{2}+b y^{2}+2 x y=2 \quad \frac{d^{2} y}{d x^{2}}=\frac{2-(a x+b y)^{2}}{(x+b y)^{3}}
$$

c) If , show that

Question Two

$$
f(t)=e^{2 t} \cos 3 t
$$

a) (i) Derive the Laplace Transforms of the function
(ii) Determine the inverse Laplace Transforms of the following

$$
\frac{2 s^{2}-6 s-1}{(s-3)\left(s^{2}-2 s+5\right)}
$$

(I)

$$
\frac{s^{2}-6 s-64}{(s-2)\left(s^{2}-16\right)}
$$

(II)

$$
\frac{d^{2} q}{d t^{2}}+9 q=102 e^{-5 t}-\sin 3 t
$$

b) Charge in a certain circuit is described by a different equation of the type

$$
q=3 e^{-5 t}+\frac{t}{6} \cos 3 t-\frac{1}{6} \sin 3 t \quad q_{o}=3
$$

Use Laplace Transforms to show that
, given that
$q_{1}=\frac{-46}{3}$ per second

Question Three

a) Evaluate the following integrals

$$
\int \frac{x^{3}}{(x-1)(x-2)(x-3)} d x
$$

(i)

$$
\int x \ln (1+x) d x
$$

(ii)

$$
\begin{equation*}
x=a \tan \theta \quad \int \frac{d x}{\left(x^{2}+a^{2}\right)^{\frac{3}{2}}}=\frac{1}{a^{2}} \sin \left[\tan ^{-1}\left(\frac{x}{a}\right)\right]+c \tag{11marks}
\end{equation*}
$$

b) (i) Use the substitution to show that

$$
x=a \quad x=2 a \quad \int_{a}^{2 a} \frac{k d x}{\left(x^{2}+a^{2}\right)^{\frac{3}{2}}}
$$

(iii) If the work done W in moving a certain body from
is given by

$$
W=\frac{k}{a^{2}}\left[\frac{2}{\sqrt{5}}-\frac{1}{\sqrt{2}}\right]
$$

show that

Question Four

a) (i) Solve completely the following differential equation

$$
(1+x) \frac{d y}{d x}+(1+2 x) y=(1+x)^{2}
$$

$$
M d x+N d y=0
$$

(ii) State the necessary and sufficient condition for an equation to be exact hence solve the following equation

$$
\left(\frac{2 x}{y}+5 y^{2}-4 x\right) d x+\left(3 y^{2}-\frac{x^{2}}{y^{2}}+10 x y\right) d y=0
$$

(10 marks)
b) An e.m.f of $\mathrm{E}_{o}=40$ volts, a resistor of $\mathrm{R}=30$ Ohms, inductor of $\mathrm{L}=50 \mathrm{mH}$ and a capacitor of 250 mF are connected in series. Initially the circuit is dead:
(I) Form a differential equation involving
(i) The current i and time t
(ii) The charge q and time t
(iii) Solve for q and I given that $\mathrm{i}(\mathrm{o})=\mathrm{q}(\mathrm{o})=0$
(II) Derive the expressions for the voltages across
(i) Inductor L
(ii) Capacitor C
(iii) Resistance R

Question Five

a) The instantaneous current i passing through a circuit of resistance R and inductance L satisfies the

$$
L \frac{d i}{d t}+R i=V_{O} \cos \omega t
$$

ω
differential equation . Where t is time and V_{o} and are constant. Show that $i=\frac{V_{O}}{\omega^{2} L^{2}+R^{2}}\{L \omega \sin \omega t+R \cos \omega t\}+C e^{-\frac{R}{L} t}$

$$
\left(D^{2}+4\right) y=16 \cos 2 t+12 \cos 4 t
$$

b) Solve the differential equation using the D-operator method given

$$
t=0, y=o \quad y=\frac{d y}{d t}=4
$$

that and (10 marks)

