THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING

DIPLOMA IN TECHNOLOGY
ELECTRICAL POWER ENGINEERING (DEPE4)
TELECOMMUNICATION \& INFORMATION ENGINEERING (DIEP)
COMPUTER SCIENCE ENGINEERING (DCSE 4)
ELECTRONIC \& AUTOMOTIVE ENGINEERING (DIAE4)

EEE 2204: ENGINEERING MATHEMATICS IV
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY/MARCH 2012

TIME: 2HOURS

INSTRUCTION TO CANDIDATES

You should have the following for this examination

- Answer booklet
- A Non-programmable scientific calculator

This paper consists of FIVE questions.
Attempt any THREE questions
Maximum marks for each part of a question are as shown.
This paper consists of THREE printed pages

QUESTION ONE (20 MARKS)

$$
\underset{\sim}{A}=\underset{\sim}{i}+4 j-7 \underset{\sim}{k} \quad B=2 \underset{\sim}{i}+\underset{\sim}{j}-4 k
$$

$$
C=9 \underset{\sim}{i}+18 k
$$

a) Given the THREE vectors and . Determine the following

$$
(\underset{\sim}{A}+\underset{\sim}{B})-\underset{\sim}{C}
$$

(i)

$$
\underset{\sim}{A} \bullet(\underset{\sim}{B} \times \underset{\sim}{C})
$$

(ii)

$$
L\left\{e^{a t}\right\}=\frac{I}{s-a}
$$

b) (i) Using the definition of a Laplace transform show that

$$
L\left\{2 e^{3 t}(4 \cos 2 t-5 \sin 2 t)\right.
$$

(ii) Use the table of Laplace transform to determine

$$
f(x)=x^{3}-10 x^{2}+6 \quad x=2
$$

c) Determine the power series for
using Taylor's theorem about

QUESTION TWO (20 MARKS)

$$
x^{2}-3 \sin x+2 \operatorname{In}(x+1)=3.5
$$

a) Taking the first approximation as to determine the root of the equation

Correct to 3 significant figures by using Newton-Raphson iterative method
b) Using Newton Gregory formula estimate the number of students who obtained less than 45 marks from the following:

Marks	$1-40$	$40-50$	$50-60$	$60-$ 70	$70-80$
No. of Students	31	42	51	35	31

(8 marks)

QUESTION THREE (20 MARKS)

$$
\int_{0.2}^{0.4} x \operatorname{In}(1+x) d x
$$

a) Evaluate
using Maclaurins series, correct to 3 decimal places
(10 marks)

$$
\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}} \quad \cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}} \quad \sin \left(44^{\circ}\right)
$$

b) Given and approximate using power series expansion, correct to five decimal places

QUESTION FOUR (20 MARKS)

a) (i) Using the Laplace transform of the second derivative show that $L\{\sin h 3 t\}=\frac{3}{s^{2}-9}$

$$
\frac{s-2}{6 s^{2}-20}
$$

(ii) Determine the inverse Laplace transform of
b) Using Laplace transform technique, solve the following initial value problem

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=5 \sin t \quad y(0)=y^{\prime}(0)=0
$$

where

QUESTION FIVE (20 MARKS)

$$
\phi=x^{2} z+2 x y^{2}+y z^{2} \quad \phi
$$

a) Given the function determine the directional derivative of at point $(1,2,-1)$

$$
\vec{A}=\overrightarrow{25}+3 \vec{j}+4 \vec{k}
$$

in the direction of the vector

$$
\vec{F}=y z^{2}+\vec{s}+x y \vec{j}+y z \vec{k} \quad \quad \operatorname{div}(\operatorname{url} \vec{F})
$$

b) (i) Given a vector field determine

$$
\phi=2 x^{3} y^{2} z^{4} \quad \phi
$$

(ii) Given determine div grad
c) A plane contains three points $\mathrm{p}=(1,0,0), \mathrm{Q}=(1,1,1)$ and $\mathrm{R}=(2,-1,3)$. Determine a vector or thogonal to the plane

