THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Engineering and Technology
DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING DIPLOMA IN TECHNOLOGY

EEA 2306: ENGINEERING MATHEMATICS VI

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY 2012
TIME: 2 HOURS

Instructions to Candidates:

This paper consists of FIVE questions

- Answer Booklet
- Scientific Calculator/SMP Table
- Abridged Laplace transform table

Answer question ONE (COMPULSORY) and any other TWO questions
Marks are indicated for each part of the question
This paper consists of THREE printed pages

Question One

a) Determine the eigenvalues of the following matrix

$$
\left[\begin{array}{ccc}
-2 & 5 & 4 \tag{7marks}\\
5 & 7 & 5 \\
4 & 5 & -2
\end{array}\right]
$$

b) Diagonolise the following matrix

$$
A=\left[\begin{array}{cc}
6 & -3 \tag{13marks}\\
2 & 1
\end{array}\right]
$$

Question Two

$$
f(z)=|z|^{2}
$$

a) Show that the complex variable function differentiable only at the origin. (6 marks)

$$
u=x^{2}-y^{2} \quad V=\frac{y}{x^{2}+y^{2}}
$$

b) Prove that and are harmonic functions of (x, y) but are not harmonic conjugates.

$$
W=\phi+j \varphi
$$

c) Given that represent the complex potential for an electric field and $\varphi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$, determine the function

Question Three

$$
t^{2} e^{t} \sin 4 t
$$

a) Determine the Laplace transform of
b) Express the following function in terms of unit step junction:

$$
f(t) \begin{cases}t-1, & 1<t<2 \\ 3-t, & 2<t<3\end{cases}
$$

c) use the Laplace transforms to determine the solution of the initial value problem (IVP)

$$
\begin{aligned}
& y^{\prime \prime}-4 y^{\prime}+4 y=64 \sin 2 t \\
& y(0)=0, y^{1}(0=1)
\end{aligned}
$$

Question Four

$$
|z|-3 j \left\lvert\,=3 \quad w=\frac{1}{z}\right.
$$

a) Determine the image of under the mapping
b) A triangle has vertices at $\mathrm{j}, 1+\mathrm{j}$ and $1-\mathrm{j}$ in the z - plane. Determine its image in the w -plane under

$$
w=e^{5 \pi j} \bullet z-2+4 j
$$

the transformation

$$
x^{2}-y=4 \quad w=z^{2}
$$

c) A curve is given by the equation
. Transform the curve under the mapping
(4 marks)

Question Five

a) Given the system of simultaneous equation

$$
\begin{aligned}
& 2 x_{1}-x_{2}=0 \\
& -6 x_{1}+2 x_{2}-3 x_{3}=0 \\
& -x_{2}+2 x_{3}=0
\end{aligned}
$$

(i) Write down the system in matrix form and let the matrix of the system be 4
(ii) Determine the eigenvalues and corresponding eigenvectors of the simultaneous equation (10 marks)
b) Derive the Cauchy-Riemann equation in Cartesian form

