THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN CIVIL ENGINEERING (DC 011)
DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBC 011)
ECV 2201: THEORY OF STRUCTURES I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: MAY/JUNE 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Calculator

This paper consists of FIVE questions
Answer question any THREE questions
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

Question 1 (20 marks)

a) A universal column section acting as a stanchion carries an axial load and two further loads from incoming beams supported on brackets. The arrangement of loads may be assumed to be as that shown in figure 1. Determine the extreme fibre stresses acting at the corners A, B, C and D. Properties of the universal column section: $\mathrm{A}=11,400 \mathrm{~mm}^{2}$.
$\mathrm{Ixx}=143 \times 10^{6} \mathrm{~mm}^{4}, \mathrm{Iyy}=48 \times 10^{6} \mathrm{~mm}^{4}$

90KN
b) A rectangular strut is 150 mm wide and 120 mm thick. It carries a load 180 KN at an eccentricity of 10 mm in the plane by bisecting the thickness. Find the maximum and minimum intensity of stress in the section.

Question 2 (20 marks)

A horizontal beam of uniform section and 6 m long is simply supported at its ends. Two vertical concentrated loads of 48 KN and 40 KN act 1 m and 3 m respectively from the left hand support. Determine the position and magnitude of the maximum deflection, if $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ and $\mathrm{I}=85 \times 10^{-}$ ${ }^{6} \mathrm{~m}^{4}$

Figure 2

Question 3 (20 marks)

A hollow allow tube 5 m long with diameter 40 mm and 25 mm respectively was found to extend 6.4 mm under a tensile load 600 KN . Calculate the bulking load for the tube when used as a strut with both ends pinned. Also find the safe load on the tube, taking factor of safety as 4 .
(20 marks)

Question 4 (20 marks)

A column 3 m long hinged at its both ends is made up of two channels ISJC 200 and 225 cm x Icm flange plates as shown in figure 3.

Y

Determine the maximum eccentricity for a load 40 tonnes from y - y axes, if the maximum permissible stress is $800 \mathrm{~kg} / \mathrm{cm}^{2}$. Take $\mathrm{E}=2 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$. The properties of channel section are: $\mathrm{A}=$ $17.77 \mathrm{~cm}^{2}, \mathrm{I}_{\mathrm{yy}}=84.2 \mathrm{~cm}^{4}$. Distance of the centroid from back of web $=1.97 \mathrm{~cm}$.
(20 marks)

Question 5 (20 marks)

a) State Mohr's theorems for slope and deflection
b) Figure 4 shows a loaded cantilever beam. Using Mohr's theorems, determine the deflection at points B. C and the slope C in terms of EI

Figure 4

