THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION TECHNOLOGY - DIT 2K 10J (YR 2 SEM 2)

ECS 2215: COMPUTATIONAL MATHEMATICS

END OF SEMESTER EXAMINATIONS

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

Answer question ONE (COMPULSORY) and any other TWO questions

SECTION A ($\mathbf{3 0}$ MARKS)

Question 1 (Compulsory)

a) Complete the table below

Decimal	Binary	Octal	Hexadecimal
297			
	1101001_{2}	151_{8}	
			$4 \mathrm{f} 1_{16}$

b) Using 4 bit representation, evaluate the following arithmetic's two's complement notation
i) 14-8
ii) $7-13$
(3 marks)
(4 marks)
c) Draw the symbol of a three input NOR operator and list all the possible outputs
d) Represent 13 as a BCD with the following methods Excess 3 and 2421 (4 marks)
e) Describe how Repetition Codes can be used as an error detection scheme
f) Outline four sources of errors in a transmitted signal
g) Name TWO alphanumeric coding systems in use today

SECTION B (Answer any TWO questions (40 marks)

Question 2

a) Form a system of NAND gates that can perform the operation of NOR gate (4marks)
b) Draw a truth table for P.T. $(\mathrm{P}+\mathrm{Z})$
c) Draw the logic circuit for the Boolean expression $(\mathrm{A}+\mathrm{C})^{\cdot}\left(\mathrm{AD}+\mathrm{A} .^{\bar{D}}\right)+\mathrm{A} . \mathrm{C}+\mathrm{C}$ and represent a simple circuit with equivalent output

Question 3

a) Represent the decimal number 237 in gray code
b) Differentiate between weighted and non-weighted codes
c) Using the method of 4-bit two's complement evaluate the following
(i) $7-13$
(3 marks)
(ii) $11-5$
(3 marks)
d) Solve 713-975 in BCD

Question 4

a) Design a diode resistor assembly to depict the logic performed by an AND operator.
b) Briefly describe how switches can be connected to perform the function of an OR operator marks)
c) Given $\mathrm{A}^{-}(\mathrm{B}+\mathrm{C})+\mathrm{B}^{\circ} \mathrm{C}=\mathrm{Q}$ and that $\mathrm{A}=\mathrm{C} 1, \mathrm{~B}=0$ determine the state of output signal Q .
d) Determine all possible outputs of a three input Ex-OR operator

Question 5

$$
\overline{A \cdot B}=\bar{A}+\bar{B}
$$

a) Show that
(7 marks)
b) Evaluate
(i) $10110_{2} \stackrel{\times}{\div} \underset{\left(1110_{2}\right.}{\div}$
(3 marks)
(ii) $110110_{2} \quad 101_{2}$ (to 3 d.p.)
(4 marks)
c) Using 4 - bit two's complement method solve
(i) 5-3 (4 marks)
(ii) $0110_{2}-1011_{2}$
(3 marks)

