

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION TECHNOLOGY – DIT 2K 10J (YR 2 SEM 2)

ECS 2215: COMPUTATIONAL MATHEMATICS

END OF SEMESTER EXAMINATIONS

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

<u>Instructions to Candidates:</u> You should have the following for this examination

• Answer booklet

Answer question **ONE (COMPULSORY)** and any other **TWO** questions

This paper consists of **THREE** printed pages **SECTION A** (30 MARKS)

Question 1 (Compulsory)

a) Complete the table below

Decimal	Binary	Octal	Hexadecimal
297			
	11010012	151 ₈	
			4f1 ₁₆

(8 marks)

b) Using 4 bit representation, evaluate the following arithmetic's two's complement notation

i)	14 - 8	(3 marks)
ii)	7 – 13	(4 marks)

c) Draw the symbol of a three input NOR operator and list all the possible outputs

d)	Represent 13 as a BCD with the following methods Excess 3 and 2421	(3 marks) (4 marks)
e)	Describe how Repetition Codes can be used as an error detection scheme	(3 marks)
f)	Outline four sources of errors in a transmitted signal	(3 marks)

g) Name **TWO** alphanumeric coding systems in use today (2 marks)

SECTION B (Answer any TWO questions (40 marks)

Question 2

a)	Form a system of NAND gates that can perform the operation of NOR gate	(4marks)			
b)	Draw a truth table for P.T. (P+Z)	(4 marks)			
c)	Draw the logic circuit for the Boolean expression $(A+C)$ $(AD + A)$ represent a simple circuit with equivalent output				
Qı	Question 3				
a)	Represent the decimal number 237 in gray code	(4 marks)			
b)	Differentiate between weighted and non-weighted codes	(4 marks)			
c)	c) Using the method of 4-bit two's complement evaluate the following				
	(i) $7 - 13$ (ii) $11 - 5$	(3 marks) (3 marks)			

© 2011 – The Mombasa Polytechnic University College

Question 4

 a) Design a diode resistor assembly to depict the logic performed by an AND operator. (7 marks) b) Briefly describe how switches can be connected to perform the function of an OR operation (6 marks) 			
c) Given $A'(B+C) + B'C = Q$ and that $A = C 1$, $B = 0$ determine the state of output signal Q.			
d) Determine all possible outputs of a three input Ex-OR operator	(3 marks) (4 marks)		
Question 5			
a) Show that $\overline{A \cdot B} = \overline{A} + \overline{B}$	(7 marks)		
b) Evaluate ×			
(i) 10110_2 1110 ₂	(3 marks)		
(ii) $110110_2 \cdot 101_2$ (to 3 d.p.)	(4 marks)		
 c) Using 4 – bit two's complement method solve (i) 5 - 3 (ii) 0110₂ – 1011₂ 	(4 marks) (3 marks)		