

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

BACHELOR OF SCIENCE IN BUILDING & CIVIL ENGINEERING

ECE 2402: HYDROLOGY I

END OF SEMESTER EXAMINATION SERIES: AUGUST/SEPTEMBER 2011 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

Answer booklet

This paper consists of **FIVE** questions in **TWO** sections **A & B**Answer question **ONE (COMPULSORY)** and any other **TWO** questions
Maximum marks for each part of a question are as shown
This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question 1

The following table presents field data from a small lake

Table 1: field data on water loss from a small lake

Fall in water level	Wind speed(u)	es – ea
(cm/day) (E₀)	(Km/day)	(MB)
0.30	40	5.2
0.41	130	5.9
0.51	115	9.1
0.48	81	15.3
0.50	151	10.7
0.55	70	15.9
0.78	230	11.8

0.81	140	17.0
0.90	170	12.0
0.99	97	12.5

a) Determine the mass-transfer coefficient (N)

(20 marks)

b) Determine the rate of seepage(s)

(10 marks)

SECTION B (Answer any TWO questions from this section)

Question 2

- a) Describe THREE common methods of calculating areal precipitation for an area (6 marks)
- b) Explain the formula for estimating a missing rainfall record at a station (A) using data from three other surrounding stations B C and D (10 marks)
- c) Describe **FOUR** common methods of checking the consistency of precipitation records (4 marks)

Question 3

Fig 3 presents the annual precipitation data in (mm) for weather stations

*20

Fig 3.0

a) Calculate the average areal precipitation using the arithmetic average method

(4 marks)

b) Calculate the average areal precipitation using the Thiessen-weighted average method

(14 marks)

c) Calculate the error between the two methods in percentage

(2 marks)

Question 4

a)	Sketch and show the main dimensions of a class A evaporation pan	(2 marks)
b)	What is the standard class A pan coefficient factor	(2 marks)
c)	State the THREE types of recording rain gauges	(6 marks)
d)	d) Briefly describe the FIVE lifting mechanisms for air masses under dynamic cooling co	
Qu	nestion 5	(10 marks)
a)	Explain the THREE types of evaporation pans	(6 marks)
b)	Describe the FOUR main factors on the evaporation pan coefficient	(8 marks)
c)	Define the following terms: (i) Evaporation (ii) Transpiration (iii) Evapotranspiration	(6 marks)