
 TECHICAL UIviventiri Ur' MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2312: HYDRAULICS II
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions.
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Define the specific speed of a turbine.
(2 marks)
b) Explain why and how causitation is undesirable.
c) Give the mathematical expression of cavitation and explain the terms.
d) Outline various measures of Coastal Erosion Controls.
e) A pelton wheel having a mean diameter of 1.2 m is running at 1000 rpm . The net head on the Pelton wheel is 840 m . If the side clearance angel is 15° and discharge through the nozzle is $0.12 \mathrm{~m} 3 / \mathrm{s}$.

Determine:
(i) Power available at the nozzle and
(ii) Hydraulic efficiency of the turbine.

Question Two

The water available for a Pelton wheel is $4 \mathrm{~m}^{3} / \mathrm{s}$ and the total head from the reservoir to the nozzle is 250m. The turbine has two runners with two jets per runner. All the four jets have the same diameters. The pipe is 3 km long. The efficiency of transmission through the pipeline and the nozzle is 91% and efficiency of each runner is 90%. The velocity co-efficient of each nozzle is 0.975 and coefficient of friction ' 4 f ' for the pipe is 0.0045 .

Determine:
(i) The power developed by the turbine
(9 marks)
(ii) The diameter of the jet, and
(iii) The diameter of the pipeline

Question Three

The following data relate to a double overhung Pelton unit:
Output of generator 25000 kW
Generator efficiency 93\%
Effective head at the base of nozzle 300 m
Pelton wheel efficiency 85\%
Coefficient of velocity 0.97
Speed ratio 0.46
Jet ratio 12
Determine:
(i) Size of jet
(9 marks)
(ii) Mean diameter of qunner
(11 marks)

Question Four

a) Describe the types of head of a centrifugal pump.
(4 marks)
b) Outline the various losses of a centrifugal pump
η
c) Describe the mechanical efficiency ${ }_{\mathrm{m}}$ of a pump
(6 marks)
d) The impelles of a centrifugal pump having external and internal diameter 500 mm and 250 mm respectively, width at outlet 50 mm and running at 1200 rpm works against a head of 48 m . The velocity of flow through the impelles is constant and equal to $3.0 \mathrm{~m} / \mathrm{s}$. The vanes are set back at an angle of 40° at outlet.
Determine:
(i) Inlet vane angle
(ii) Manometric efficiency

Question Five

a) Describe with the aid of a diagram the small wave theory and give a fundamental assumption in the theoretical development of the theory.
b) A centrifugal pump running at 800 rpm is working against a total head of 20.2 m .

The external diameter of the impeller is 480 m and outlet width 60 mm . If the vanes angle at outlet is 40° and manometric efficiency is 70\%, Determine:
(i) Flow velocity at outlet
(ii) Absolute velocity of water leaving the vane
(iii) Angle made by the absolute velocity at outlet with the direction of motion at outlet.
(5 marks)
(iv) Rate of flow through the pump.
(4 marks)

