THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN BUILDING \& CIVIL ENGINEERING

ECE 2312: HYDRAULICS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1 (20 marks)
a) Define the specific speed of a turbine and define the terms
c) Define Overall efficiency (m)
d) A Petton wheel having a mean bucket diameter of 1.2 m is running at 1000 rpm . The net head on the Petton wheel is 840 m . If the side clearance angle is 15° and discharge through the nozzle is $0.12 \mathrm{~m}^{3} / \mathrm{s}$.
Calculate:
(i) Power available at the nozzle
(1 $1 / 2$ marks)
(ii) Hydraulic efficiency of the turbine

SECTION B (Attempt any TWO questions)

Question 2 (20 marks)

The water available for a Petton when is $4 \mathrm{~m}^{3} / \mathrm{s}$ and the total head from the reservoir to the nozzle is 250m. The turbine has two runners with two jets per runner. All the form jets have the same diameters. The pipe is 3 km long. The efficiency of transmission through the pipeline and the nozzle is 91% and efficiency of each runner is 90%. The velocity coefficient of each nozzle is 0.975 and coefficient of friction ' 4 f ' for the pipe is 0.0045 .

Calculate:
(i) The power developed by the turbine
(7 marks)
(ii) The diameter of the jet; (6 marks)
(iii) The diameter of the pipe line

Question 3 (20 marks)

a) Calculate the specific speed of a pump whose operating characteristics are:
$\mathrm{Q}=44.16 \mathrm{~m}^{3} / \mathrm{s}$ and $\mathrm{N}=1200 \mathrm{rpm}$
$\mathrm{H}=36.58 \mathrm{M}$
(5 marks)
b) At its rated capacity of $44.16 \mathrm{~m} 3 / \mathrm{s}$ this pump develops 36.58 m of head when operating at 1459 rpm.
(i) Calculate the head (5 marks)
(ii) Discharge (5 marks)
(iii) Power required (5 marks)

Question 4 (20 marks)

a) Make short notes on:
(i) Breaking waves
(ii) Wind waves or wind generated waves
(iii) General coastal management strategies
b) A centrifugal pump impeller having external and internal diameters 480 mm and 240 mm respectively is running at 100 rpm .

The rate of flow through the pump is $0.0576 \mathrm{~m}^{3} / \mathrm{s}$ and velocity of flow is constant and equal to $2.4 \mathrm{~m} / \mathrm{s} 180 \mathrm{~mm}$ and 120 mm respectively and suction and delivery heads are 6.2 m and 30.2 m of water respectively.

If the power required driving the pump is 23.3 KW and the outlet vane angle is 45°.
Determine:
(a) Inlet vane angle
(3 marks)
(b) The overall efficiency of the pump
(c) The manometric efficiency of the pump

Question 5 (20 marks)

a) A single-acting reciprocating pump, running at 50 rpm . Delivers $0.00736 \mathrm{~m} 3 / \mathrm{s}$ of water. The diameter of the piston is 200 mm and stroke length 300 mm .
The suction and delivery heads are 3.5 m and 11.5 m respectively
Determine:
(i) Theoretical discharge (4 marks)
(ii) Coefficient of discharge (3 marks)
(iii) Percentage slip of the pump and;
(2 marks)
(iv) The power required to run the pump
b) A single acting reciprocating pump operating at 120 rpm has a piston diameter of 200 mm and stroke of 300 mm . The suction and delivery heads are 4 m and 20 m respectively. The efficiency of both suction and delivery strokes is 75%.

Determine the power required by the pump

