

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2214: STRENGTH OF MATERIALS II

END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions.
Answer question ONE and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One

a) A rectangular section column with $200 \mathrm{~mm} \times 150 \mathrm{~mm}(\mathrm{db}) 20 \mathrm{~mm}$ thick and 2.0 m long is used as a strut with both ends pinned. Compare its crippling load by Eulers and Rankines formula hence show that:

$$
\frac{1}{P}=\frac{P}{P E}+\frac{1}{P C}
$$

Given that the crushing strength of the column material is $60 \mathrm{KN} / \mathrm{mm}^{2}$ and Es $=200 \mathrm{KN} / \mathrm{mm}^{2}$
(15 marks)
b) Explain the 'NO' tension analogy in column and briefly describe its relevance in Civil Engineering.
(4 marks)
c) A cast Iron bracket subjected to bending has a cross-section of 1 shape with unequal flanges as shown on figure 1C.
(i) If the compressive stress in top flange is not exceed $17.5 \mathrm{~N} / \mathrm{mm}^{2}$, what is the bending moment the section can take.
(ii) If the section is subjected to shear force of 100 KN , draw the shear stress distribution over the depth of the section

Figure 1 c
(11 marks)

Question Two

A hollow rectangular section column 160 mm x 200 mm (bd) with a circular hole of 80 mm diameter as shown in figure 2. It carries an eccentric loading of 10 tonnes located at point P as shown. Determine the values of stresses at the corners of the section.

Figure 2

Question Three

a) From the principles of buckling of compression members; show that, the buckling load of column with one end fixed and other end free is given by:

$$
P=\frac{\pi^{2} E I}{4 L^{2}}
$$

b) Outline THREE assumptions of Rankine theory for active pressure.

Question Four

a) The composite beam shown in figure 4a is subjected to a bending moment of 650KNm. Determine the maximum stresses in steel and in timber given that, the ratio of Yong's Modulus of steel and that for timber is $20: 1$

Timber
b) A hollow alloyed tube 5 m long with diameters 40 mm and 25 mm external and internal respectively was found to extend 6.4 mm under a tensile load of 60 KN . Find the buckling load by Euler's formula with both ends fixed.

Question Five

Figure 5a shows a retaining wall supporting soils 1 at the top and soil type 2 at the bottom and a surcharge of $18 \mathrm{KN} / \mathrm{m}^{3}$. Given that:

- Weight of upper soil $\mathrm{W} 1=20 \mathrm{KN} / \mathrm{m}^{3}$

$$
\phi=30^{\circ}
$$

- Weight of bottom soil W2 $=24 \mathrm{KN} / \mathrm{m}^{3}$

$$
\phi=30^{\circ}
$$

Find the resultant lateral pressure and distance of point of application from the bottom.

$3 m$

Fig. 5a
(20 marks)

