THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE ((A Constituent College of JKUAT)

(A Centre of Excellence)
Faculty of Engineering \& Technology in Conjunction with Kenya Institute of Highways and Building \& Technology (KIHBT)

EBE 3201: MATHEMATICS
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Mathematical Table/Calculator

This paper consists of FIVE questions
Answer any THREE questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (20 Marks)

a) Deflection of a team is represented by the following differential equation.

$$
Y^{\prime \prime}+100 y=10
$$

Determine an expression for y, when;

$$
y(0)=0, \quad y^{\prime}(0)=1
$$

i)

$$
y(0)=0, \quad y^{\prime}(0)=2
$$

ii)
(12 marks)
b) A particle oscillates with simple harmonic motion its displacement is expressed as
$x=(5 \mathrm{~cm}) \cos (2+\pi / 6)$
, where x is in cm and t in seconds.
At $t=0$, find:-
i) Displacement of particle
ii) Its velocity, and
iii) Its acceleration
iv) Period and amplitude of motion.

$$
y=x^{2}
$$

c) Find the area under the parabola for x between 0 and 3 .

Question Two (20 marks)

a) Determine the area of the region enclosed by $y=\sin x \quad y=\cos x \quad x=\pi / 4$ and \quad at \quad and the y-axis. (6 marks)
b) A 4 kg object is attached to a spring and will stretch the spring 350 mm by itself. There is no damping $F(t)=10 \cos (w t)$ in the system and a forcing function of the form , is attached to the object and the system experience resonance. If the object is initially displaced 20 cm downward from its equilibrium position and given a velocity of $10 \mathrm{~m} / \mathrm{sec}$ upward. Find the displacement at any time t .
(5 marks)
c) Suppose you throw a hammer to a friend, who is 25 feet above you. Determine:

$$
V_{o}=32 \mathrm{ft} / \mathrm{sec}
$$

(i) If you throw the hammer at an initial velocity of . Determine its distance.
(ii) Determine smallest possible value of V_{o} to enable hammer reach your friend.
(6 marks)

$$
\frac{1}{2} d^{2} y / d x^{2}+2 d y / d x+y=0
$$

d) Evaluate,

Question Three (20 marks)

$$
d^{2} y / d x^{2}+4 y=2
$$

$$
d y / d x=7
$$

a) Solve the following initial value problem, given that, $\mathrm{x}=0, \mathrm{y}=0$.
(8 marks)
b) You are having a free falling object whose acceleration due to gravity is $-24 \mathrm{ft} / \mathrm{sec}^{2}$

Determine:-
i) Initial velocity
ii) Initial distance of the object

$$
2 y^{\prime \prime}+6 y^{\prime}+y=0
$$

c) Find the general solution of the differential equations

Question Four (20 marks)

$$
y=x^{2} \quad y=x
$$

a) Find the area between the curves,
and
(5 marks)
b) An object 30 m below ground level accelerates at a rate of $4 \mathrm{tm} / \mathrm{sec}^{2}$. Determine its height after 6 seconds.
(5 marks)

$$
y=x^{3} \quad y=\sqrt{x}
$$

c) Find the centre of the mass for the region by
and
(10 marks)

Question Five (20 marks)

$$
\begin{equation*}
2 y^{\prime \prime}+7 y^{\prime}+3 y=7 \tag{7marks}
\end{equation*}
$$

a) Determine the general solution for

$$
y=\sqrt{9-x^{2}}-2 \leq x \leq 2
$$

b) Determine the surface area of the solid obtained by rotating about the x-axis. (5 marks)
c) Given that a 4 kg weight stretched a spring 8 inches from its natural length. The weight is pulled down an additional 6 inches and released with an initial upward velocity of $8 \mathrm{ft} /$ second. Determine a formula for the opposition of the weight as a function of time, t.
(8 marks)

