

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(**(A Constituent College of JKUAT)** (A Centre of Excellence)

Faculty of Engineering &

Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING & CIVIL ENGINEERING (HDBC)

EBC 3302: SOIL MECHANICS II

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

- Charts 11.9&11.7 This paper consists of **FIVE** questions. Answer any **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages **Question One (20 marks)**

a) State **FIVE** Objectives of site investigation.

b) A square footing of 3.0m side is to be founded at a depth of 1.5m in medium sand (= 19.4KN/m³). The water table is located at a depth 3m. During site investigation, a standard penetration Test Produced the following values:

TABLE 1:

DEPTH (M)	1.3	2.1	3.1	3.9	4.2	4.5
N-VALUE	7	9	12	12	17	20

Determine an estimate for the allowable bearing capacity based on a maximum settlement of 25mm. Use figure 11.9 (10 marks)

Question Two (20 marks)

- **a)** (i) Define the term soil erosion
 - (ii) State the **TWO** main agents of soil erosion

	(iii) Briefly explain conservation measures put in place to reduce soil erosion by agent in (a) (i above.	i) (9 marks)			
b)	(i) Briefly explain the term soil Erodibility.(ii) State the THREE factors that provide soil Erodibility.	(5 marks)			
c)	Explain the THREE aspects of soil erosion due to slope gradient and length.	(6 marks)			
Question Three (20 marks)					
a)	With the aid of a sketch, describe slope failure due to Rotational slips.	(5 marks)			

- **b)** The bank of a canal has the profile shown in figure 1. The material is homogeneous clay of density 2050kg/m³, cohesion 30KN/m² and angle of shearing resistance zero. For the trial slip circle shown, the area ABCDE is 158m² and the centroid is at G Find for each of the following conditions the factor of safety for this slip circle:
 - i) If the water in the canal is level with the top of the bank
 - ii) If the canal is empty

In both cases, allow for a tension crack 3m deep which may be filled with water. (15 marks)

(10 marks)

Question Four (20 marks)

J

- a) Name and outline **THREE** factors that influence methods used in site investigation. (9 marks)
- **b)** Outline the plate loading test.

Question Five (20 marks)

- a) A cutting in a saturated clay is inclined at a slope of 1 vertical: 1:5 horizontal and has a vertical height of 9.0m. The bulk unit weight of the soil is 18.5KN/m³ and its undrained cohesion is 40KN/m² $\phi_u = 0$)
 - (

5.0m

(11 marks)

Determine the factors of safety against immediate shear failure along the slip circle shown in figure 2:

- i) Allowing for tension crack
- ii) Allowing for the tension crack empty of water and;
- iii) Allowing for the tension crack when full of water.

 $heta = 84.06^{\circ}$ Take: Sector Angle Area of slip mass = 77.35m² d = 6.0m

$$\theta_{c} = 67.44^{\circ}$$

And Sector Angle Area of slip mass = $71.64m^2$ d = 5.2m

(12 marks)

b) Briefly outline the non-drilling method using Hand-Anger

(8 marks)