

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

INSTITUTIONAL BASED PROGRAMME

DIPLOMA IN BUILDING & CIVIL ENGINEERING

EBC 22011: STRENGTH OF MATERIALS II

END OF SEMESTER EXAMINATION

SERIES: NOVEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

This paper consists of **FIVE** questions

- Answer Booklet
- Pocket Calculator

Answer question **ONE** (**COMPULSORY**) in **SECTION A** and any other **TWO** questions in **SECTION** B

Marks are indicated for each part of the question This paper consists of **FOUR** printed pages

SECTION A (Answer all questions in this section - 30 Marks)

Question One

- a) With the aid of a stress-strain graph, sketch the behavior of mild steel in tension, indicating all the critical points (10 marks)
- b) Define the following terms related to 1(a)
 - (i) Hooke's Law
 - (ii) Limit of Proportinality
 - (iii) Elastic limit
 - (iv) Yield point
 - (v) Maximum stress
 - (vi) Permissible working stress

(12 marks)

c) Resolve the member forces in figure 1. Determine whether in tension or compression (8 marks)

Figure 1

SECTION A (Answer all questions in this section - 20 Marks each)

Question Two

Using the method of joint resolution, determine the forces in each member of the frame and state whether it's a strut or a tie (20 marks)

60°

Question Three

a) Define the following:

- i) Centre of gravity
- ii) Centre of area (centroid)
- iii) Second moment of area (8 marks)
- b) For the figure 3 shown, calculate the second moment of area about x-x and y-y (12 marks)

Figure 3

Question Four

- a) Define the following
 - (i) Reaction
 - (ii) Shear force
 - (iii) Bending moment

(6 marks0

b) Sketch the shear force and bending moment diagrams for figure 2 indicating the critical values (14 marks)

40KN/m

Question Five

a) A short rigid bar weighing 29.4KN is suspended by copper and steel wires of areas 150mm^2 and 60mm^2 respectively as shown in figure 5

Determine:

- (i) The stress in each rod
- (ii) Extension of each rod

(15 marks)

Figure 5

- b) A mass of concrete pier (column) of a rectangular cross-section 650 x 800mm and 22m long carries an axial compressive load of $2.5 \times 10^6 N$
 - i) Determine the stress in the concrete at the base of the pier
 - ii) The amount of shortening that will occur in the pier. Density of concrete 24KN/m³ (5 marks)