

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

BACHELOR OF ENGINEERING IN BUILDING & CIVIL ENGINEERING (BEBC) [Institutional Based Programmes]

EBC 4413: THEORY OF STRUCTURES V

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Answer any **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **TWO** printed pages

Question One (30 marks)

- a) Finite element method is a critical method for stability analysis of structures. Outline using illustrations the fundamental concept of equilibrium relating to this method.
 (8 marks)
- **b)** Outline **FOUR** limitations of the finite element method.
- c) Discuss the concept of finite element theory as applied to structure using illustrations where appropriate. (6 marks)
- **d)** A horizontal structural element is subjected to an axial force and an elastic spring of uniform stiffness.
 - (i) Develop an elemental stiffness matrix for the structure.
 - (ii) Explain the terms used in the matrix
 - (iii) Comment on the perception of the matrix

(6 marks)

Assume:	The axial force	=	"p"	
	Stiffness for the elastic spring	=	"t"	(10 marks)

Question Two (20 marks)

A fixed uniform beam PQ is 6m long. The beam is loaded with a 5KN concentrated load at 2m from the support at P. Determine:

a) Modal displacement	(8 marks)
b) Moment of the beam	(12 marks)

Question Three (20 marks)

Figure 1 shows a supported truss. Determine forces in the members. (20 marks)

С

Question Four (20 marks)

A prismatic beam is as shown in figure 2. Flexural rigidity of the beam is EI constant. Analyze the beam using the flexibility method. (20 marks)

W

Question Five (20 marks)

An axially loaded structural member PQ has an overall length 'L'. It is subjected to an axial force F_p at end P and F_q at end Q. The cross sectional area and modulus of elasticity for the member are "C" and "D" respectively.

a) Derive an expression for:

	Force F_p and F_q expressing them in matrix form.	(15 marks)
b)	Explain all the terms used in the matrix obtained in (a)	(5 marks)