THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

 (A Constituent College of JKUAT)Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
BACHELOR OF ENGINEERING IN BUILDING \& CIVIL ENGINEERING (BEBC)
[Institutional Based Programmes]

EBC 4413: THEORY OF STRUCTURES V
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2012
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination
- Answer Booklet
This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (30 marks)

a) Finite element method is a critical method for stability analysis of structures. Outline using illustrations the fundamental concept of equilibrium relating to this method.
(8 marks)
b) Outline FOUR limitations of the finite element method.
c) Discuss the concept of finite element theory as applied to structure using illustrations where appropriate.
d) A horizontal structural element is subjected to an axial force and an elastic spring of uniform stiffness.
(i) Develop an elemental stiffness matrix for the structure.
(ii) Explain the terms used in the matrix
(iii) Comment on the perception of the matrix

Assume: The axial force $=\quad$ "p"
(10 marks)

Question Two (20 marks)

A fixed uniform beam PQ is 6 m long. The beam is loaded with a 5 KN concentrated load at 2 m from the support at P. Determine:
a) Modal displacement (8 marks)
b) Moment of the beam

Question Three (20 marks)

Figure 1 shows a supported truss. Determine forces in the members.
(20 marks)
C

Question Four (20 marks)

A prismatic beam is as shown in figure 2. Flexural rigidity of the beam is EI constant. Analyze the beam using the flexibility method.
(20 marks)
W

Question Five (20 marks)

An axially loaded structural member $P Q$ has an overall length ' L '. It is subjected to an axial force F_{p} at end P and F_{q} at end Q. The cross sectional area and modulus of elasticity for the member are " C " and " D " respectively.
a) Derive an expression for:

Force F_{p} and F_{q} expressing them in matrix form.
b) Explain all the terms used in the matrix obtained in (a)

