THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR BACHELOR OF ENGINEERING IN BUILDING \& CIVIL ENGINEERING \& BACHELOR OF SCIENCE IN CIVIL ENGINEERING

EBC 4207/ECE 2203: FLUID MECHANICS I

END OF SEMESTER EXAMINATION
SERIES: APRIL 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions in TWO sections I \& II
Answer question ONE (Compulsory) and any other TWO questions
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION I (Compulsory)

Question 1

a) Proof that Pressure in liquids acts equally in all directions
b) State and explain the FOUR major properties of fluids
c) A mercury U - tube manometer is used to measure the pressure above atmospheric of water in a pipe, the water being in contact with the mercury in the left limb. If the mercury is 35 cm below A in the left limb and 25 cm above A in the right hand limb, compute the pressure at A , given that the Specific Gravity of Mercury is 13.6
d) Differentiate between liquids and gases

SECTION II (Answer any TWO questions)

Question 2

a) Explain the following terms:
(i) Uniform flow
(ii) Steady flow
(iii) Unsteady flow
(iv) Mass flow rate
b) Oil flows through a pipe line, which contracts 450 mm diameter at A to 300 mm diameter at B and then forks, one branch being 150 mm diameter discharging at C and the other branch 225 mm diameter discharging at D . If the velocity at A is $1.75 \mathrm{~m} / \mathrm{sec}$ and the velocity at D is $3.5 \mathrm{~mm} / \mathrm{sec}$, calculate the discharges at C and D and the velocities at B and C .
c) Describe the THREE conditions in which a solid body can be in equilibrium

Question 3

a) Differentiate between turbulent flow and laminar flow
b) State the Principle of Archimedes. A steel pipeline conveying gas has an internal diameter of 120 cm and an external diameter of 125 cm . It is laid across the bed of a river, completely immersed in water and is anchored at intervals of 3 m along its length. Compute the buoyancy force in newtons per meters run and the upward force in newtons on each anchorage. The density of steel $=7900 \mathrm{~kg} / \mathrm{m}^{3}$, the density of water is given as $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(10 marks)
c) State any TWO advantages and FOUR disadvantages of manometers

Question 4

a) A cylindrical buoy 1.35 m in diameter and 1.80 m high has a mass of 70 kg . Indicate whether it will float or not with its vertical axis in the sea water of density $1025 \mathrm{~kg} / \mathrm{m}^{3}$. The centre of gravity of the buoy is 0.9 m from its base
(5 marks)
b) What is meant by the following:
(i) Potential head
(ii) Pressure head
(iii) Velocity head
(iv) Total head of a liquid in motion

State Bernoulli's theorem. A jet of water from a 2 mm diameter nozzle is directly vertically upwards. Assuming that the jet remains circular and neglecting any loss of energy, what will be the diameter of the jet at a point 4.5 m above the nozzle if the velocity with which the jet leaves the nozzle is $12.0 \mathrm{~m} / \mathrm{sec}$?
c) The velocity components in a fluid flow u, is given by:
$\mathrm{U}=2 \mathrm{xy} ; \mathrm{V}=\mathrm{a}^{2}+\mathrm{x}^{2}-\mathrm{y}^{2}$ find out whether the flow is possible

Question 5

a) Water is flowing through a pipe having a diameter of 300 mm at the bottom and upper end respectively. The intensity of pressure at the bottom end is $24.525 \mathrm{M} / \mathrm{cm}^{2}$ and the pressure at the upper end is $9.81 \mathrm{~N} / \mathrm{m}^{2}$. Determine the difference in datum head if the rate of flow through the pipe is $40 \mathrm{l} / \mathrm{s}$
b) Define Vortices and describe their characteristics
c) Differentiate between gauge pressure and vacuum pressure

