



# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

## (A Constituent College of JKUAT) Faculty of Engineering and Technology

## DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

# HIGHER DIPLOMA IN BUILDING & CIVIL ENGINEERING

## EBC 3221: HYDROLOGY

## END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2011

TIME: 2 HOURS

#### **Instructions to Candidates:**

You should have the following for this examination

- Answer booklet
- Calculator

This paper consists of **FIVE** questions in two sections **A** & **B** Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions. Maximum marks for each part of a question are clearly shown This paper consists of **THREE** printed pages

### **SECTION A (COMPULSORY)**

#### **Question 1**

a) Explain the role of various factors that influence evaporation from a water body and soil surface and transpiration from plants (26 marks)

| b) State the general equation for total evaporation and explain the terms | (4 marks) |  |  |  |
|---------------------------------------------------------------------------|-----------|--|--|--|
| SECTION B (Answer any TWO questions from this section)                    |           |  |  |  |
| Question 2                                                                |           |  |  |  |
| a) State the Darcy's equation and explain the terms                       | (5 marks) |  |  |  |

b) State the importance of the extension of Darcy's Law to ground water flow (5 marks)

Figure 1

For the arrangement above;

|           | (i)<br>(ii)<br>(iii)         | Calculate the velocity<br>Calculate the Discharge<br>Calculate Transmissivity | (5 marks)<br>(3 marks)<br>(2 marks) |  |  |  |
|-----------|------------------------------|-------------------------------------------------------------------------------|-------------------------------------|--|--|--|
| Question3 |                              |                                                                               |                                     |  |  |  |
| a)        | Define                       | the Instantaneous Unit Hydrograph:                                            | (6 marks)                           |  |  |  |
| b)        | ) Define the Unit Hydrograph |                                                                               |                                     |  |  |  |
| c)        | State tl                     | he general equation for the unit hydrograph and explain                       | (3 marks)                           |  |  |  |

d) Outline **THREE** assumptions that give the unit Hydrograph simple properties assisting in its application (6 marks)

#### **Question 4**

a) A well of radius 0.5m completely penetrates an unconfined aquifer with K = 30m/day and H = 50m. The well is pumped so that the water level in the well remains at 40m above the bottom.

Assuming that pumping has essentially no effect on water table height at r = 500m and that well losses are zero. Calculate the steady state well discharge (10 marks)

b) Using the Gumbel approach with x = 700

 $\overline{x}$ <br/>=288, T = 113.3(i)Calculate the theoretical recurrence interval for a flood flow 700,000 cfs(ii)Calculate the probability P(2 marks)

#### **Question 5**

| a) | State the commonly accepted measures for reducing flood damage | (10 marks) |
|----|----------------------------------------------------------------|------------|
| b) | Explain the catchment response to a storm                      | (10 marks) |