

# TECHNICAL UNIVERSITY OF MOMBASA

# Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING
HIGHER DIPLOMA IN BUILDING & CIVIL ENGINEERING

EBC 3203: REINFORCED CONCRETE & MASONRY & DESIGN

END OF SEMESTER EXAMINATION SERIES: APRIL 2013 TIME ALLOWED: 2 HOURS

#### **Instructions to Candidates:**

You should have the following for this examination

- Answer Booklet

This paper consists of  $\boldsymbol{FIVE}$  questions.

Answer any **THREE** questions

Maximum marks for each part of a question are as shown

This paper consists of **THREE** printed pages

#### **Question One**

**a)** Outline the process of structural design.

(5 marks)

b) The flow of a classroom block 6.5 x 15.0m consists of six beams equally spaced at 3.0 centres and monolithically casted together. The beams are in turn supported on reinforced concrete columns.

Design the slab:

#### Data:

- Imposed load =  $215KN/m^2$ 

- 20mm thick screed on upper side of slab

- 15mm thick screed on lower side of slab

#### **Question Two**

- **a)** Figure 1 shows a plan of a office block. Design slab panel "X:
- b) Sketch a section through the shorter span showing the arrangement of reinforcement. (20 marks)

#### Data:

- Imposed load =  $3.0 \text{KN/m}^2$ - Density of concrete =  $24 \text{KN/m}^3$ - Finishes =  $0.7 \text{KN/m}^2$ - Pst =  $230 \text{N/mm}^2$ 

## **Question Three**

The floor of a hall of clear spans 3.0m by 7.5m is supported on 200mm thick block walls on all its four sides.

- a) Design the slab
- **b)** Sketch a section through the shorter span to show the arrangement of reinforcement.

**(20 marks)** 

#### Data:

- Pst =  $230\text{N/mm}^2$ - Density of concrete =  $24\text{KN/m}^3$ - Finished =  $0.6\text{KN/m}^2$ - Imposed load =  $3.0\text{KN/m}^2$ 

### **Question Four**

a) State factors governing structural design

| <b>b)</b> Design T-beam in question 1(b) | (20 marks) |
|------------------------------------------|------------|
| Question Five                            |            |
| Design typical L-beam in question 1 (b)  | (20 marks) |