

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING & CIVIL ENGINEERING

EBC 3118: SOIL MECHANICS I

END OF SEMESTER EXAMINATION

SERIES: APRIL 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Graph Paper (2No)
- Plasticity Chart

This paper consists of **FIVE** questions Answer any **THREE** questions Maximum marks for each part of a question are clearly shown This paper consists of **FOUR** printed pages

Question 1 (20 marks)

- a) (i) Explain the term soil as used in civil engineering.
 - (ii) Determine the saturation capacity of a soil, given:
 - Bulky density = 1.96g/cc
 - Specific gravity of soil = 2.75
 - Moisture content = 16%
- b) Show from first principles the relationship between dry unit weight, moisture content and the bulk unit weight (4 marks)
- c) Briefly explain the procedure for determining specific gravity of soil in the laboratory. (5 marks)
- d) A fully saturated clay has a volume of 180cm³ and weighs 320g. If the specific gravity of the soil particles is 2.6, determine:
 - (i) Void ratio
 - (ii) Porosity

Question 2 (20 marks)

a) A standard proctor compaction test carried out on a sandy clay of specific gravity 2.55 gave the following results

Bulky density (kg/m ³)	2187	2160	2155	2140	2125	2058
Moisture content (%)	22	18.2	16.8	15.1	14.5	12.5

- (i) Using graphical method, determine the compaction parameters
- (ii) Calculate the moisture content if the soil were compacted at 100% saturation to the maximum by density in 2(a) (i) (16 marks)
- b) Outline **TWO** factors which affect compaction

(4 marks)

Question 3 (20 marks)

a) An undisturbed soil sample subjected to a variable head permeability test had the following test details.

Length of sample = 200mm Diameter of sample = 100mm Diameter of standpipe = 2mm Initial head = 450mm Final head = 150mm Time for drop in head = 10 minutes (6 marks)

(5 marks)

A field permeability test on the same sample yielded the following data.

-	Rate of pumping =	10m3	3/day
-	Height of W.L above hard stratum in observation well 1	=	4m
-	Height of W.L above hard stratum in observation well 2	=	8 m
-	Radial distance to observation well 1	=	16m
-	Radial distance to observation well 2	=	32m

- (i) Calculate the coefficient of permeability in m/day for each of the tests
- (ii) Outline at least **THREE** factors that influence deviations in test results from the **TWO** test methods. (15 marks)
- b) Briefly describe the constant head permeameter test:

Question 4 (20 marks)

a) In an undrained triaxial test on three specimens of a sandy clay soil taken from a depth of 3m below ground level, the following results were obtained:

Cell pressure (KN/m ²)	Deviator stress (KN/m²)		
200	221		
400	362		
600	505		

- (i) Draw the Mohr's diagram and determine the shear strength parameters.
- (ii) Obtain the Coulomb's equation for the soil. Take the density of soil as 2000kg/m³

(10 marks)

- b) Outline the procedure for carrying out vane test
- c) A shear Vane apparatus was used to determine the undrained shear strength of a silt. The plates of the apparatus measured 12.7mm in height and 12.5mm in width. A torque of 0.45 x 10⁻³ KNm was applied. Calculate the undrained shear strength of the soil (5 marks)

Question 5 (20 marks)

- a) Explain the following terms:
 - (i) Liquid limit
 - (ii) Plastic limit
 - (iii) Shrinkage limit
- b) The following results were obtained from a liquid limit test on a fine-grained soil.

Penetration (mm)	15.6	18.2	21.4	23.6
Moisture content (%)	48.6	54.6	62.2	67.4

(5 marks)

 $(4\frac{1}{2} \text{ marks})$

(5 marks)

A plastic limit test gave a value of 22%. What is the casagrande classification for this soil? Use the plasticity chart provided. (6½ marks)

- c) Outline the sieve analysis test. (6 marks)
- d) Define the following terms:
 - (i) Effective size
 - (ii) Uniformity coefficient

(3 marks)