THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of JKUAT)
(A Centre of Excellence)
Faculty of Engineering \&
Technology
DEPARTMENT OF BUILDING \& CIVIL ENGINEERING HIGHER DIPLOMA IN BUIDLING \& CIVIL ENGINEERING

EBC 3108: FLUID MECHANICS II
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (20 Marks)
a) A venturimeter with a throat 100 mm diameter is connected to a 300 mm diameter water pipe. A differential mercury manometer connected to the inlet and throat of the meter reads a deflection of 25 cm . If the coefficient the meter $\mathrm{cd}=0.95$. Determine the discharge in:
(10 marks)
i) $\mathrm{m}^{3} / \mathrm{s}$
ii) $\mathrm{kg} / \mathrm{min}$
b) A rectangular orifice 2 m wide and 4 m deep is discharging water from a tank whose water level is 10 m above the top edge of the orifice. Find the discharge if $\mathrm{cd}=0.6$
(4 marks)
c) A pitot-static tube is placed in the centre of a 250 mm diameter pipe conveying water at a rate of $0.041 \mathrm{dm}^{3} / \mathrm{s}$. The difference in pressure between the two orifices is measured as 60 mm of water. If the mean velocity in the pipe is 0.8 times the central velocity, calculate the coefficient of the meter.
(6 marks)

Question Two (20 marks)

a) The actual velocity in the contracted section of a jet of liquid flowing from a 50 mm diameter orifice is $8.5 \mathrm{~m} / \mathrm{s}$ under the head of 4.6 m . If the actual discharge is measured as $6001 /$ minute. Determine the coefficient of:
i) Velocity Cr
ii) Discharge Cd
iii) Contraction Cc
(12 marks)
b) With the aid of sketches differentiate the following:
i) Orifice plate from venture nozzle
ii) A small orifice from mouthpiece.
c) State FOUR assumptions made in deriving 'Bernoulli's Theorem"
(4 marks)

Question Three (20 marks)

a) A weir 2.5 m long has 0.6 m head of water over the crest of the weir. If the channel approaching the weir is 6 m wide. Determine the discharge over the weir to 2 decimal places considering the velocity of approach using Francis formula.
(14 marks)
b) Outline THREE major differences between a notch and a weir.
(6 marks)

Question Four (20 marks)

a) Derive the discharge equation over a rectangular notch using the usual notations.
b) A trapezoidal notch has 30 cm base and sides sloping at 30° to the vertical if the head causing flow is 160 mm and $\mathrm{Cd}=0.62$, determine the rate of flow.
c) A 20 m long Cippoletti weir discharges $200 \mathrm{~m}^{3} / \mathrm{s}$ of water. The $\mathrm{Cd}=0.6$, determine the height of the weir.
d) With the aid of sketches, illustrate the following flow conditions in a weir:
i) Free flow
ii) Submerged flow

Question Five (20 marks)

a) A 200 mm diameter pipe conveys $18 \mathrm{~m}^{3} / \mathrm{hr}$ of water through a 150 m long pipe. Calculate the loss due to friction using:
i) Darcy's equation, if $\mathrm{f}=0.01$
ii) Chezy's equation, if $\mathrm{c}=44.31$
iii) Manning's equation, if $n=0.0137$
b) The pipeline shown in figure 1 has the following particulars dia $\mathrm{AB}=\mathrm{CD}=300 \mathrm{~mm}$, dia $\mathrm{BC}=150 \mathrm{~mm}$,

Length $A B=60 \mathrm{~m}, B C=30 \mathrm{~m}, C D=30 \mathrm{~m}$
Pressure at $A=200 \mathrm{~m}$ of water
Pressure at $D=179 \mathrm{~m}$ of water

Figure 1

Darcy's f for $\mathrm{AB} \& \mathrm{CD}=0.005$ and for $\mathrm{BC}=0.00375$. The coefficient of contraction $\mathrm{Cc}=0.622$. Determine the discharge considering all losses.

