

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING (HDBCE 12S)
EBC 3108: FLUID MECHANICS II
END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination
Answer Booklet

This paper consists of FIVE questions.
Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) (i) Make a labeled diagram of a pitot-static tube.
(ii) State TWO installation conditions of a pitot tube.
(8 marks)
b) Oil of specific gravity 0.8 is flowing through a 600 x 400 mm venturimeter at a rate of 3 litres per second. If the manometer liquid is mercury, determine the deflection in the manometer connected to the inlet and throat of the meter. $\mathrm{Cd}=\mathrm{I}$
(10 marks)
c) State TWO requirement of the liquid used in differential u-tube manometers.
(2 marks)

Question Two

a) A swimming pool 5 m wide and 10 m long contains water to a depth of 6 m . The pool is fitted with a square orifice $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ at the bottom. If $\mathrm{Cd}=0.6$ for the orifice, determine:
(i) Time required to completely empty the orifice
(ii) Time required to empty half the contents of the pool.
(iii) The depth to which water falls in 4 minutes
(iv) The quantity of water discharged in 4 minutes.
(10 marks)
b) Water discharges at a rate of $0.982 \mathrm{~m}^{3} / \mathrm{s}$ through a 120 mm diameter vertical sharp edged orifice under a constant head of 10 m . A point on the jet, measured from the vena contracta has coordinates of 4.5 m horizontal and 0.54 m vertical. Determine the following:
(i) Coefficient of velocity Cr
(ii) Coefficient of contraction Cc
(iii) Coefficient of discharge Cd
(10 marks)

Question Three

a) An orifice 1.5 m square is provided at the side of a reservoir. The water level on the upstream side is 1 m above the top edge of the orifice and on the downstream side it is 0.5 m below the top edge of the orifice. $\mathrm{Cd}=0.64$. Calculate the discharge through the orifice.
(9 marks)
b) A trapezoidal notch has a base 0.3 m long and sides inclined at 30° to the vertical. The head causing flow is 0.16 m and the coefficient of the notch is 0.6 . Calculate the discharge over the notch.
c) State ONE effect of the following one discharge over weirs.
(i) End contraction
(ii) Velocity of approach

Question Four

a) Derive the discharge equation over a rectangular notch using usual notations.
b) A cippolett weir with a crest length of 400 mm is used to measure the flow in a rectangular channel 600 mm wide. The water level in the channel is 50 mm above the crest of the weir. $\mathrm{Cd}=063$. Estimate the discharge in the channel in $\mathrm{m}^{3} / \mathrm{s}$ to two decimal places, considering the velocity of approach.

(12 marks)

Question Five

a) Two reservoirs having a difference in the water levels of 25 m are connected by a 300 mm diameter pipe 8 km long. Assuming Darcy's $\mathrm{f}=0.006$ and ignoring minor losses, determine:
(i) The velocity in the pipe
(ii) The discharge in the pipe
b) Define the following terms as used in pipe flow.
(i) Total energy line
(ii) Hydraulic grade line
(iii) Parallel pipes
(iv) Pipes in series
(8 marks)
c) Explain TWO ways in which the discharge between two reservoirs can be increased. (4 marks)

