

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Engineering &

Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING & CIVIL ENGINEERING (HDBC 12S)

EBC 3107: THEORY OF STRUCTURES II

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: FEBRUARY 2013 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

- Scientific Calculator

This paper consists of **FIVE** questions. Answer any **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One**

Using McCauley's method, determine in terms of EI, the deflection at point C and D in beam loaded as shown in figure 1. (20 marks)

Figure 1

Question Two

- a) For the beam shown in figure 2, sketch the influence line diagram for:
 - (i) The reactions at A
 - (ii) The reaction at B
 - (iii) The bending moment at E

(12 ½ marks)

b) Determine the maximum bending moment at point E in 2(a) when a uniformly distributed load of 50KN/m and 6m long crosses the beam from C to D. (7 ¹/₂ marks)

Figure 2

Question Three

- a) State the first and second Mohr's theorems and give their mathematical expressions. (4 marks)
- b) Figure 3 shows a simple beam supported at points A and B and acted on by two moving point loads 1.0m apart.
 - (i) Sketch the influence lines diagrams for R_A, R_B shear force and bending moment at point E on the beam.
 - (ii) Determine the maximum shear force and bending moment at point E on the beam.

(16 marks)

Question Four

- (a) Figure 4 shows the cross-section of a cast iron beam. The beam is 7m long and simply supported at point 2m and 5.5m from the left-hand end. Determine the maximum value of uniformly distributed load (inclusive of self weight) the beam can carry. The fibres stresses are not to exceed 15N/mm² in tension and 30N/mm² in compression. (17 marks)
- b) Determine the maximum uniformly distributed load the beam in 4(a) above would carry if the flanges were reversed so that the 25mm flange is at the bottom. (3 marks)

100mm

Question Five

a) A simply supported beam has a span of 20m. A uniformly distributed load of 2KN/m and 5 metres long crosses the span. Find the maximum BM produced at a point 8m from the left support.

(20 marks)