

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

BRIDGING IN HIGHER DIPLOMA

EBC 2206: FLUID MECHANICS I

SPECIAL/SUPPLEMENTARY EXAMINATON

SERIES: FEBRUARY/MARCH 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Electronic Calculator

This paper consists of **FIVE** questions. Answer question **ONE** (**COMPULSORY**) from section **A** and any other **TWO** from section **B**

Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

SECTION A (COMPULSORY – 30 MARKS)

Question 1

- a) Define the following terms:
 - (i) Mass
 - (ii) Force
 - (iii) Weight
 - (iv) Hydrostatics
 - (v) Intensity of pressure
 - (vi) Fluid
- b) A certain liquid has a relative density of 1.0. Determine in SI units the:
 - (i) Volume of 200kg of the liquid
 - (ii) Unit weight of the liquid
 - (iii) Mass density of the liquid
 - (iv) Mass of $1.5m^3$ of the liquid

SECTION B (Attempt any TWO questions from this section – 20 marks each)

Question 2

- a) An inverted differential manometer is fitted between two pipes A and B containing two different liquids as shown in figure 1. Determine the difference in pressure between pipes A and B.
 - (i) In N/m^2
 - (ii) In metres of water
 - (iii) In Kpa

Figure 1

b) State **THREE** properties of a manometer liquid for a simple u-tube manometer (3 marks)

(9 marks)

(8 marks)

(12 marks)

c) Differentiate the following

- (i) Atmospheric pressure
- (ii) Gauge pressure
- (iii) Absolute pressure
- (iv) Perfect vacuum

Question 3

a) Figure 2 shows a gate AB which is part of a circle of radius 3m.

А

Determine:

- (i) The resultant pressure on the gate per metre length
- (ii) The angle at which the resultant acts

(8 marks)

b) A circular gate 1m diameter is immersed in water as shown in figure 3

Fig 3

Determine:

- (i) The total pressure on the plate
- (ii) The depth at which the total pressure acts

(8 marks)

(8 marks)

Question 4

a) Two pipes A and R of dia 30cm and 20cm respectively join to form a single pipe P of 450mm dia. The velocity in P is 3m/s and Q is 2.5m/s as shown in figure 4.

Fig 4

De	Determine: (i) Discharge in Pipe P			
	(ii) (iii)	Velocity in pipe R Discharge in pipe R	(8 marks)	
An oil with a specific gravity of 0.8 if flowing in a circular pipe at a rate of 2000 l/s with a velocity of 3m/s. Determine:				
	(i) (ii)	The diameter of the pipe The mass flow rate of the oil	(6 marks)	
b)	State: (i) (ii)	Bernoulli's theorem Assumptions made in deriving Bernoulli's equation	(6 marks)	
Question 5				
a)	With body	the aid of sketches, briefly describe the THREE conditions of equili	brium of a solid (9 marks)	
b)	Define the following terms			
	(i) (ii) (iii) (iv)	Buoyancy Centre of buoyancy Metacentric height Metacentre	(8 marks)	
c)	State 4	Archimede's principle	(3 marks)	