THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

BRIDGING IN HIGHER DIPLOMA

EBC 2206: FLUID MECHANICS I

SPECIAL/SUPPLEMENTARY EXAMINATON
SERIES: FEBRUARY/MARCH 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Electronic Calculator

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) from section A and any other TWO from section B
Maximum marks for each part of a question are as shown This paper consists of FOUR printed pages

SECTION A (COMPULSORY - 30 MARKS)

Question 1

a) Define the following terms:
(i) Mass
(ii) Force
(iii) Weight
(iv) Hydrostatics
(v) Intensity of pressure
(vi) Fluid
(12 marks)
b) A certain liquid has a relative density of 1.0. Determine in SI units the:
(i) Volume of 200 kg of the liquid
(ii) Unit weight of the liquid
(iii) Mass density of the liquid
(iv) Mass of $1.5 \mathrm{~m}^{3}$ of the liquid
(8 marks)

SECTION B (Attempt any TWO questions from this section - 20 marks each)

Question 2

a) An inverted differential manometer is fitted between two pipes A and B containing two different liquids as shown in figure 1. Determine the difference in pressure between pipes A and B.
(i) In $\mathrm{N} / \mathrm{m}^{2}$
(ii) In metres of water
(iii) In Kpa

Figure 1
b) State THREE properties of a manometer liquid for a simple u-tube manometer (3 marks)
c) Differentiate the following
(i) Atmospheric pressure
(ii) Gauge pressure
(iii) Absolute pressure
(iv) Perfect vacuum

Question 3

a) Figure 2 shows a gate AB which is part of a circle of radius 3 m .

A

Determine:
(i) The resultant pressure on the gate per metre length
(ii) The angle at which the resultant acts
b) A circular gate 1 m diameter is immersed in water as shown in figure 3

Fig 3

Determine:
(i) The total pressure on the plate
(ii) The depth at which the total pressure acts
c) With the aid of a sketch, explain the principle of a mercury barometer

Question 4

a) Two pipes A and R of dia 30 cm and 20 cm respectively join to form a single pipe P of 450 mm dia. The velocity in P is $3 \mathrm{~m} / \mathrm{s}$ and Q is $2.5 \mathrm{~m} / \mathrm{s}$ as shown in figure 4 .

Fig 4

Determine:
(i) Discharge in Pipe P
(ii) Velocity in pipe R
(iii) Discharge in pipe R (8 marks)

An oil with a specific gravity of 0.8 if flowing in a circular pipe at a rate of $2000 \mathrm{l} / \mathrm{s}$ with a velocity of $3 \mathrm{~m} / \mathrm{s}$. Determine:
(i) The diameter of the pipe
(ii) The mass flow rate of the oil (6 marks)
b) State:
(i) Bernoulli's theorem
(ii) Assumptions made in deriving Bernoulli's equation (6 marks)

Question 5

a) With the aid of sketches, briefly describe the THREE conditions of equilibrium of a solid body
b) Define the following terms
(i) Buoyancy
(ii) Centre of buoyancy
(iii) Metacentric height
(iv) Metacentre
c) State Archimede's principle

