THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN CIVIL ENGINEERING WITH COMPUTER AIDED DESIGN DIPLOMA IN BUILDING AND CIVIL ENGINEERING

EBC 2322: COMPUTER PROGRAMMING
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- A set of drawing instruments

This paper consists of FIVE questions in two sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions.
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1 (30 marks)

a) Briefly outline SIX characteristics of a well designed program
b) (i) Outline three types of programming errors and their effects
(ii) Write a program to evaluate the series for the first ten terms

$$
\frac{x^{3}}{3!}+\frac{x^{6}}{6!}+\frac{x^{9}}{9!}+\frac{x^{12}}{12!}+\ldots \cdot \frac{x^{3 n}}{3 n!}
$$

c) Write out the output of the following program:

10	FOR I = 1 TO 3 STEP 0.5
20	FOR J = 1 TO 3
25	X = I*J
30	PRINT, I, J, X
40	NEXT I
50	NEXT J
60	END

SECTION B (Answer any TWO questions from this section)

Question 2 (20 marks)

a) Write a program in Basic to produce a 12 row mathematical table for any given number using the "FOR........NEXT statement
(10 marks)

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

b) The Newton-Raphson's approximation is given by where x_{0} is the estimate and x_{1} the improved estimate. Write a program to evaluate the square root of a number from the quadratic relationship $f(x)=x^{2}-c=0$ using 10 iterations.
(10 marks)

Question 3 (20 marks)

a) Write a computer program in BASIC using the "IF......THEN" statement to output prime numbers less than 10 .
b) List SIX steps to be followed in problem solving by algorithms

Question 4 (20 marks)

$$
\frac{3}{4}+\frac{5}{4^{2}}+\frac{7}{4^{3}} \ldots . .
$$

a) Write a program in BASIC to evaluate the series using the first five items.
(9 marks)
b) Using the $\operatorname{INT}()$ function write a program to convert hours in decimal to Hours: Minutes; and seconds
c) Write the output of the following program

10

$$
\mathrm{X}=2
$$

$20 \quad$ FOR Y = 1 TO 3
$25 \quad \mathrm{X}=\mathrm{X}+2$
$30 \quad$ FOR J = 1 TO 4
$40 \quad \mathrm{Z}=\mathrm{X}$ * Y
$50 \quad$ PRINT X, Y, J, Z
60 NEXT J
70 NEXTY
80
END

Question 5 (20 marks)

a) Write a program to evaluate the factorial of any given number using the "FOR...NEXT" statement.
b) Explain the following programming terms:

> Syntax
> Loop
> Self-replacement statement
> Illegal function call

