

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING

DIPLOMA IN CIVIL ENGINEERING

EBC 2321: HYDROLOGY

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

• Answer Booklet

This paper consists of **FIVE** questions

Answer question **ONE (COMPULSORY)** from **SECTION A** and any other **TWO** questions from **SECTION B** Maximum marks for each part of a question are clearly shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question 1(20 marks)

a)	With the a	h the aid of a sketch, briefly describe the hydrological cycle (10 marks		ks)			
b)	Define the (i) (ii) (iii) (iv) (v)	following forms of precipitation Rainfall Drizzle Hail Dew Sleet	I	(10	narks)		
c)	Sketch a s	tandard raingauge and label all the parts indicating important dimens	ions	(6 m	arks)		
d)	Define the (i) (ii)	following terms: Evapotranspiration Hydrology		(4 m	arks)		
SECTION B (Answer any TWO questions from this section)							
Question 2 (20 marks)							
a)	State FOU	${f R}$ factors considered when choosing a site for a raingauge station		(4 m	arks)		
b)	State FOU	J R advantages of recording raingauges		(4 m	arks)		
c)	State FOU	${f R}$ sources of errors when making rainfall measurements		(4 m	arks)		
d)	Define the (i) (ii) (iii) (iv)	following terms Areal rainfall Mean annual rainfall Isohyets Interception loss	ſ	(8	marks)		

Question 3 (20 marks)

a) A drainage basin has FIVE existing raingauge stations. The average annual precipitation at each station was recorded as shown in table 1.

Table 1

Station average	А	В	С	D	Е
annual precipitation	41	45	90	80	54

Determine the optimum number of rainguages in the basin so as to limit the percentage error to within 10% (10 marks)

b) The following data were obtained from rainfall data in a catchment using Thissen polygon method (see table 2)

Table 2

Station	Α	В	С	D	Ε
Polygon Area (ha)	748	906	77	1495	518
Observed rainfall mm	81	142	198	114	267

- (i) Estimate the average depth of rainfall in the catchment
- (ii) Estimate the total 'volume' of rainfall water received in m³ in the catchment (10 marks)

Question 4 (20 marks)

a)	Sketch and label a USWB class A pan showing salient dimensions	(6 marks)		

- b) State **FOUR** factors that affect the evaporation rate (4 marks)
- c) During a daily routine observation 10.8 litres of water were added to bring the water level in an evaporation pan to the stipulated (normal) level. A nearby rainguage measured 3.6mm of rainfall during the same period. Determine the evaporation depth for that day assuming that a pan with a diameter of 1206.5mm was used. (6 marks)
- d) Define the following terms:
 - (i) Infiltration capacity
 - (ii) Percolation

Question 5 (20 marks)

a) The data in table 3 was obtained during a stream flow measurement exercise.

Distance from temporary	0.5	1.5	3.3	5.1	7.1	9.3
B.m at the bank of the stream (m)						
Depth of vertical (m)	0	0.6	1.2	0.8	0.6	0
Mean velocity in vertical (m/s)	0	0.72	1.31	0.83	0.68	0

Using the mean section method, calculate:

- i) The stream flow
- ii) The mean velocity of flow
- b) (i) With the aid of a sketch, briefly describe the derivation of a rating curve for a stream.
 - (ii) Outline the use of a rating curve in estimating stream flow. (6 marks)

(4 marks)

(14 marks)