

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 11) DIPLOMA IN CIVIL ENGINEERING (DCE 11)

EBC 2304: SOIL MECHANICS II

END OF SEMESTER EXAMINATION SERIES: APRIL 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

- a) State **FIVE** objectives of site investigation.
- **b)** A square foundation of 3.5m side is to be founded at a depth of 1.5m in medium sand (= 19.4KN/m³). The water table is located at a depth of 3.6m. During site investigation a standard penetration test produced the following values:

Depth B.S (m)	1.	2.	3.0	3.8	4.6	8.4
	4	2				
N Value	7	9	12	12	17	20

Determine an estimate for the allowable bearing capacity based on a maximum settlement of 25mm. Use fig 11.9. (10 marks)

Question Two

- a) With the aid of a sketch, describe Rotational slip as applied in slope failure. (5 marks)
- b) The slope of a water-retaining embankment is 1 vertical to 2 horizontal and the vertical height is 10m. The soil is fully saturated and has an undrained cohesion of 30KN/m² and a unit weight of 18KN/m³. Determine the factor of safety against shear failure along the trial circle shown in figure 1 when the water table is 6m above the toe. Use the following data:

Sector angle		(15 marks)
	$\theta = 76.06^{\circ}$	
	Centroid distance, $d_B = 4.44m$	
For zone B (EDA):	Area, $A_B = 144.11m^2$	
For zone A (FBDE):	Area $A_A = 41.92m^2$ Centroid distance, $d_A = 13.0m$	

(10 marks)

Question Three

a)	(i) Explain the term soil erodibility(ii) State FOUR factors which provide resistance to soil erodibility.	(6 marks)
b)	Outline the SIX factors which control the rate and magnitude of soil erosion by wind.	(14 marks)
Qu	lestion Four	
a)	With the aid of a sketch, outline the plate loading test.	(15 marks)
b)	Outline TWO factors which influence methods used in site investigation.	(5 marks)

Question Five

a) A cutting in a saturated clay is inclined at a slope of 1 vertical: 1.5 horizontal and has a vertical height of 10m. The bulk unit weight of the soil is 18.5KN/m³ and its undrained cohesion is 40KN/m³

Determine the factors of safety against immediate shear failure along the slip circle shown in figure 2:

- (i) Allowing for tension crack empty of water and
 (ii) Allowing for tension crack when full of water (15 marks)
- b) Explain the **TWO** classes of slopes, giving **TWO** examples in each case. (5 marks)