

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \&

 Technology

 Technology}

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE 12J) DIPLOMA IN CIVIL ENGINERING (DCE II)

EBC 2304: FLUID MECHANICS II

END OF SEMESTER EXAMINATION

SERIES: APRIL 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions.
Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) A $150 \mathrm{~mm} \times 75 \mathrm{~mm}$ venturimeter is used to measure the flow rate of oil of sp gr 0.9. A mercury manometer connected to the throat and inlet of the meter reads a deflection of 150 mmof the mercury. The actual discharge is $1.7 \mathrm{~m} 3 /$ minute. Determine the coefficient of discharge of the meter.
b) A pitot static tube is used to measure the velocity of water in a pipe. If the mercury manometer attached to it shows a reading of 0.7 m , and the coefficient of velocity $\mathrm{C}=0.98$, calculate the velocity of water in the pipe.
(6 marks)
c) A rectangular orifice 2 m wide and 4 m deep is discharging water from a tank whose water level is 10 m above the top edge of the orifice. $\mathrm{Cd}=0.6$, determine the discharge.
(4 marks)

Question Two

a) Water is discharged through a 15 cm diameter orifice in the vertical side of an open tank at a rate of $1901 / \mathrm{s}$. Water stands 15 m above the centre line of the orifice. A point on the jet measured from the vena contracta has co-ordinates 5 m horizontal and 0.5 m vertical. Determine:
(i) Coefficient of discharge, Cd
(ii) Coefficient of velocity, Cv
(iii) Coefficient of contraction, Cc
b) An orifice meter 0.15 m diameter is fitted to a 0.3 m diameter pipe to measure the flow rate of water through it. If the pressure difference across the orifice is 10 m of water and $\mathrm{Cd}=0.59$, calculate the discharge in the pipe.
(8 marks)
c) State TWO advantages of an orifice meter over a venturimeter.
(2 marks)

Question Three

a) A weir 2.5 m long has 0.6 m head of water over the crest. The channel approaching the weir is 6 m wide. Using Francis formula, determine the discharge over the weir considering velocity of approach (Answer to 2 decimal places)
(14 marks)
b) Outline THREE major differences between a "notch" and a "weir"

Question Four

a) Derive the discharge equation over a rectangular notch using usual notations.
b) A cippolett weir 3 m long and $\mathrm{Cd}=0.6$ is used to measure the rate of flow in a channel. If the height of water above the crest level is 0.5 , determine the discharge.
(5 marks)
c) A trapezoidal notch has 30 cm base and sides inclined at 30° to the vertical $\mathrm{Cd}=0.6$ and the actual discharge was measured as $0.042 \mathrm{~m}^{3} / \mathrm{s}$. Determine the head causing flow.
(7 marks)

Question Five

a) Define the following terms as used in pipe flow.
(i) Total energy line
(ii) Hydraulic grade line
(iii) Parallel pipes
(iv) Pipes in series
(8 marks)
b) A pipe 60 m long and 150 mm in diameter is connected to a water tank at one end and water flows freely into the atmosphere at the other end. The height of the water level in the tank is 2.6 m above the of pipe which is horizontal. Darcy's $f=0.01$. Determine the discharge through the pipe considering all loves.
(12 marks)

