THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN CIVIL ENGINEERING (DC 10A)
DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBC 10A)

EBC 2301: THEORY OF STRUCTURES III
END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2011
TIME: 2 HOURS

[^0]
Question 1 (30 marks)

A Portal frame ABCD shown in figure 1 is loaded with a uniformly distributed load of $2,000 \mathrm{~kg} / \mathrm{m}$ on the horizontal member. The moment of inertia of member $\mathrm{AB}=$ that of $\mathrm{CD}=\mathrm{I}$ and that of member $\mathrm{BC}=3 \mathrm{I}$.

Fig. 1

Find the support reactions and bending moment in the frame by moment distribution method and draw the bending moment diagram (make 5 distributed)

SECTION B (Answer any TWO questions from this section)

Question 2

A continuous beam ABCDE , with uniform flexural rigidity throughout, has roller supports at B,C and D, a build in support at E and an over-lang AB as shown in figure 2.

8t

It carries a uniformly distributed load of intensity of $2 \mathrm{t} / \mathrm{m}$ on AB and another of intensity of $3 \mathrm{t} / \mathrm{m}$ over BCDE. In addition to it, a point load 8tonnes is placed mid-way between C and D . The span lengths are $\mathrm{AB}=1 \mathrm{~m}, \mathrm{BC}=\mathrm{CD}=\mathrm{DE}=5 \mathrm{~m}$. Obtain the support moments by the moment distribution method and sketch BMD giving values at salent points

Question 3

Using the three moment theorem, analyze the beam shown in figure 3 and hence sketch the shearing force and bending moment diagrams indicating the values at all critical points

C

Question 4

Using the three moment theorem, evaluate the bending moment and shear force diagrams of the beam shown in figure 4.
$6 m$

Question 5

A continuous beam $A B C$ of uniform section, with span $A B$ as 8 m and $B C$ as 6 m is fixed at A and simply supported at B and C. The beam carrying a uniformly distributed load of $1 \mathrm{KN} / \mathrm{m}$ throughout its length. Find the moments along the beam and the reachous at the supports. Also draw the BMD. (20 marks)

[^0]: Instructions to Candidates:
 You should have the following for this examination

 - Answer booklet

 This paper consists of FIVE questions
 Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B
 Maximum marks for each part of a question are clearly shown

