THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN CIVIL ENGINEERING

EBC 2206: FLUID MECHANICS I

SPECIAL/SUPPLEMENTARY EXAMINATON

SERIES: OCTOBER 2011

TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) from section A and any other TWO from section B
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

SECTION A (COMPULSORY - 30 MARKS)

Question 1

a) A certain liquid has a mass density of $800 \mathrm{~kg} / \mathrm{m}^{3}$. Determine in SI units:
i) Its relative density
ii) Its unit weight
iii) The volume of 200 kg of the liquid
iv) The weight of $1.5 \mathrm{~m}^{3}$ of the liquid
b) A differential manometer is fitted between two pipes A \& B containing two different liquids as shown in fig.1. Determine the pressure difference between A and B

140mm

c) A pipe $\mathrm{P}, 450 \mathrm{~mm}$ diameter branches into two pipers Q and R of diameters 300 mm and 200 mm respectively as shown in fig. 2. The velocity in pipe P is $3 \mathrm{~m} / \mathrm{s}$ and velocity in Q is $2.5 \mathrm{~m} / \mathrm{s}$.

Fig. 2

Determine:
i) Discharge in pipe P
ii) Ve0.
iii) locity in pipe R
iv) Discharge in pipe R
d) (i) State TWO assumptions made in deriving Bernoullis eq
(ii) Name FOUR devices used for measuring velocity of a moving liquid

SECTION B (Attempt any TWO questions from this section - 20 marks each)

Question 2

a) A rectangular plate 2 m wide and 4 m deep is immersed in water as shown in fig 3 . Determine;

Fig. 3
i) The total pressure on one side of the plate
ii) The position of the centre of pressure
b) Fig. 4 shows a circular gate AB hinged at C .

A

Fig. 4
Determine:
i) The resultant pressure on the gate per metre length
ii) The angle at which the resultant acts
c) Define the following terms
i) Atmospheric pressure
ii) Gauge pressure

Question 3

a) An oil with a specific gravity of 0.8 is flowing in a pipe at a rate of $20001 / \mathrm{s}$ with a velocity of $3 \mathrm{~m} / \mathrm{s}$. Determine
i) The size of the pipe
ii) The mass flow rate of the oil
b) Water is flowing through a horizontal pipe AB 100 m long. The pipe tappers uniformly from 300 mm dia at A to 200 mm dia at B . The pressure head at A is $100 \mathrm{KN} / \mathrm{m}^{2}$ and the floow rate is $501 / \mathrm{s}$. Determine the pressure at B in
i) KPa
ii) mm of mercury
iii) M of water
(8 marks)
c) Define the following terms
i) Piezometer
ii) Siphon
iii) Perfect vacuum

Question 4

a) A jet of water 50 cm in diameter and having a velocity of $15 \mathrm{~m} / \mathrm{s}$ strikes a plate normally. Calculate the force on the plate, if the plate is
i) Stationary
ii) Moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$ towards the jet
iii) Moving with a velocity of $6 \mathrm{~m} / \mathrm{s}$ away from the jet
b) With the aid of sketches, briefly describe the THREE conditions of equilibrium of a solid body
c) Define the following terms
i) Buoyancy
ii) Metacentric height
iii) Centre of buoyancy

Question 5

a) State
i) Bernoulli's theorem
ii) Archimedes principle
b) Sketch a pitot-static tube and label all the parts
c) A pitot tube was inserted at the centre of a 100 mm diameter pipe. The water rose 200 mm in the tube. Assuming that the coefficient of the pitot-tube c $=0.99$ and that the mean velocity in the pipe is $2 / 3$ of the central velocity, calculate the discharge in the pipe
d) Differentiate between "total Energy" and "total head" of a moving liquid (4 marks)

