THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN BUILDING \& CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE

EBC 2204: ENGINEERING DRAWING II

END OF SEMESTER EXAMINATION

SERIES: AUGUST/SEPTEMBER 2011
TIME: 3 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Drawing instruments and drawing paper size A3

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a Question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

From figure 1 shown below, draw the following in $3^{\text {rd }}$ angle projection.
a) The front elevation as shown by arrow FE.
b) The end elevation in section on cutting plane $\mathrm{M}-\mathrm{M}$
c) The plan in section on cutting plane L-L. Do not copy the drawing

Fig 1 (please see attached)

SECTION B (Answer any TWO questions)

Question 2

Fig 2 shows a mild-steel bracket. Draw in $1^{\text {st }}$ angle projection. Full size
a) A front elevation in the direction of Arrow F.
b) An end elevation in the direction of arrow E
c) A plan in the direction of arrow P
d) The symbol and dimensions must be included
(20 marks)
Fig 2 (please see attached)

Question 3

Figure 3 shows three views of a block in an angle of projection. State which
a) Angle of projection used
b) Using the dimension given, draw full-size the isometric view of the block with x as the lowest point. Dimension the drawing
(20 marks)
Fig 3 (please see attached)

Question 4

Make free hand pictorial sketches of any four of the following hand tools found in building and civil workshops.
a) Claw hammer
b) Ball pen hammer
c) File handle
d) Flat file
e) Painting brash
f) Spirit level
g) Funnel
h) Anvil
i) Mallet
j) Flat screw driver
k) Spirit level
l) Star screw driver

Question 5

a) Draw the surface development of the cone shown in figure 4(a) below
b) If the cone in fig 4 4(a) is now cut obliquely as shown in fig 4(b), draw:
(i) The true shape of cut on Front Elevation
(ii) Plan
(iii) End elevation

