# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE 

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN CIVIL ENGINEERING (DC 10B) DIPLOMA IN ARCHITECTURE (DA 10B)
DIPLOMA IN BUILDING \& CIVIL \& CIVIL ENGINEERING (DBC 10B) CERTIFICATE IN ARCHITECTURE (CA 10B)

EBC 2202: THEORY OF STRUCTURES I

END OF SEMESTER EXAMINATION
SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer booklet
- Calculator

This paper consists of FIVE questions
Answer question ONE and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

## SECTION A (COMPULSORY)

## Question 1

Fig 1 shows a universal beam section strengthened by the addition of a steel plate at the top. Determine the actual stresses at point A, B, C and D if a force of 400 KN acts on the section as shown

The properties of the U.B. are:

$$
\begin{aligned}
& \mathrm{D}=310.4 \mathrm{~mm} \\
& \mathrm{~A}=60.8 \mathrm{~cm}^{2} \\
& \mathrm{Ixx}=9485 \mathrm{~cm}^{4} \\
& \mathrm{Iyy}=438 \mathrm{~cm}^{4} \\
& \mathrm{~B}=125.2 \mathrm{~mm}
\end{aligned}
$$

The indicated axes xx-and yy are for the universal beams
Fig 1.0
Y

## SECTION B (Answer any TWO questions from this section)

## Question 2

Determine deflection under each point load of the beam in fig 2.0. Using Macaulay's method. Take $\mathrm{E}=2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{I}=10^{9} \mathrm{~mm}^{4}$

Fig 2.0

A

## Question 3

a) State FOUR assumptions upon which Euler's formula is based
b) A Tubular pin-jointed strut 3 m long has an outer and inner diameter of 37.5 mm and 32.5 mm respectively. Compare the crippling loads given by Eulers and Rankine’s formula for the strut given the following:

Yield stress $=330 \mathrm{~N} / \mathrm{mm}^{2}$
Young's modulus $=210 \mathrm{KN} / \mathrm{mm}^{2}$
Rankine's Constant $=1 / 7500$
(20 marks)

## Question 4

A masonry pier of $3 \mathrm{~m} x 4 \mathrm{~m}$ supports a vertical load of 80 KN as in fig 3.
a) Find the stress developed at each corner of the pier.
b) What additional load should be placed at the centre of the pier, so that there is no tension anywhere in the pier section.
c) What are the stresses at the corners with additional load in the centre

Fig 3.0
Y

## Question 5

a) A hollow alloy tube 5 m long with diameter 40 mm and 25 mm respectively was found to extend 6.4 mm under a tensile load 60 KN . Find the buckling load for the tube when used as a strut with both ends pinned. Also find the safe load on the tube taking factor of safety as 4.
b) Obtain expressions for the slope and deflection at the free end of a cantilever carrying a uniformly distributed load as shown in fig. 4
(20 marks)

Fig 4.0
w/unit length

