THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN BUILDING \& CIVIL ENGINEERING
DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE

EBC 2201 : STRENGTH OF MATERIALS I

END OF SEMESTER EXAMINATION

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Scientific Calculator

This paper consists of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) in section A and any other TWO questions from section B
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question 1

a) Sketch the shear force and bending moment diagrams indicating the critical values for the beam loaded as shown in fig 1

Fig 1

b) Determine the positions of the points of contra flexure for the fig 1 of 1(a)

SECTION B (Answer any TWO questions from this section)

Question 2

a) (i) Define the following terms:
(i) Poisson's ratio
(ii) Modulus of rigidity
(iii) Working stress
(ii) Determine a fully labeled typical strain-strain graph for a mild steel rod tested to destruction
b) Determine the following properties of the sectional shape shown in fig 2
(i) Centre of area
(ii) Ixx
(iii) Iyy
y
(iv) bottom

Fig 2

Question 3

Determine the magnitude of the forces in the members of the frame shown in fig 3 and the nature of the forces in each member using the tension co-efficient method.

Fig 3

Question 4

a) Fig 4 shows the cross-section of built up beam made of plates. Determine;
(i) The position of the centroid along xx axis
(ii) The second moment of area about xx axis

Fig 4

Question 5

a) Find the position of the centroid of the triangular area shown in fig 5 related to the y axis
d
b) Determine both the compressive stress in the shaft and the bearing stress in the base of the column shown in fig 6 due to an axial load of 10MN.

Fig 6

