

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE

EBC 2201: STRENGTH OF MATERIALS I

SPECIAL/SUPPLEMENTARY EXAMINATON

SERIES: OCTOBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Mathematical table/Calculator

This paper consists of **FIVE** questions. Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions

Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

SECTION A (COMPULSORY)

Question 1

- a) Define the following terms:
 - i. Working stress
 - ii. Modulus of rigidity
 - iii. Poisson's ratio
 - iv. Strain (8 marks)
- b) Sketch and label a typical stress-strain graph for a mild steel rod that is tested to failure (5

marks)

c) Find the position of the centroid for the plane surface shown in figure 1 with respect to x-axis

(7 marks)

Fig. 1

d) A beam is loaded as shown in figure 2. Sketch the following indicating critical values.

- i. Shear force diagram
- ii. Bending moment diagram

(10 marks)

Fig. 2

SECTION B (Answer any TWO questions from this section)

Question 2

Figure 3 shows members of a frame. Using the tension coefficient method, determine the magnitude and nature of the forces acting on the members (20 marks)

2.5m

Question 3

a) Figure 4 shows an axial load of 20MN acting a shaft.

Fig. 4

Determine:

	i. ii.	Compressive stress Bearing stress at the base	(10 marks)
b)	Use figure 5 to determine the following		
	i.	Centre of area	
	ii.	Ixx	
	iii.	IYY	
	iv.	y from the bottom	(10 marks)
		Fig. 5	

Question 4

A beam is loaded as shown in fig 6. Determine the positions of the points of centra flexure (20 marks)

Fig. 6

Question 5

Fig. 7 shows a cross-section of a build-up beam. Determine the following:

- i. position of the centroid along xx axis
- ii. second moment of area about xx axis

25mm

(8 marks) (12 marks)