THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING DIPLOMA IN CIVIL ENGINEERING - YR I SEM II -(DC 11)

DIPLOMA IN BUILDING AND CIVIL ENGINEERING - YR 1 SEM II (DBC 11)
EBC 2109: ENGINEERING DRAWING I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Drawing paper size A2
- A set of drawing instruments

This paper consists of FIVE questions in two sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions.
Maximum marks for each part of a question are clearly shown
This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question 1 (30 marks)

a) Draw an ellipse by the intersecting arcs method given the major and minor axes as 140 and 100 mm respectively.
b) Construct a parabola given the position of the focus from the diretrix as 32 mm
c) A circle 18 mm radius rotate without slip around another circle 65 mm radius without slip. Draw the epicycloids of a point on the circumstance of the smaller radius circle for a complete revolution
(14 marks)

SECTION B (Answer any TWO questions from this section)

Question 2 (20 marks)

a) Draw a cycloid given the diameter of the generating circle as 36 mm for a complete revolution (10 marks)
b) Construct a locus of a point on the circumference of a circle which rotates round 90 mm diameter at a constant velocity and the same time advances towards its centre at a uniform rate. The point stops 10 mm from the centre of the circle. Name the locus
(10 marks)

Question 3 (20 marks)

a) Figure 1 shows the plan and elevation of a triangular lamina. Determine, by geometric, construction, the true shape of the lamina.

Figure 1
b) Construct a helix given the pitch and the diameter of the generating circle as 101 and 36 mm respectively for a complete revolution

Question 4 (20 marks)

a) Shown in figure 2 are the plan and front elevation of a hollow octagonal truncated right prism. Draw the following for the prism.
(i) The given plan
(ii) The given front view
(iii) An end elevation

Figure 2

Question 5 (20 marks)

Shown in figure 3 is a link mechanism in which $A B$ is a crank which is pin jointed to a rod $B C$. $A B$ can rotate about A but the rod is constrained to move along a straight line $\mathrm{X}-\mathrm{X}$. Draw the locus of point P for a complete revolution

Figure 3

Figure 4 shows the front elevation of right cone. Draw the following:
i) The given front elevation
ii) A complete plan

Figure 4

