THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)
(A Centre of Excellence)
Faculty of Engineering \&
Technology
DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
CONSTRUCTION TECHNICIAN II
EBC 1115: THEORY OF DEFLECTION
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Calculator

This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (20 marks)
A pin-jointed shown in figure 1 is carrying a load of 600 KN at C. Find the vertical deflection of C.
Take: Area of member $\mathrm{AB}=1000 \mathrm{~mm}^{2}$
Area of member $\mathrm{AC}=\mathrm{BC}=1500 \mathrm{~mm}^{2}$
Young's Modulus (E) $=200 \times 10^{6} \mathrm{KN} / \mathrm{m}^{2}$
(20 marks)

Question Two (20 marks)

a) Prove that the maximum deflection for a simply supported beam with a uniformly distributed load is y $=5 W L^{4} / 384 E I$.
b) A simply supported beam of span 4m is carrying a uniformly distributed load of 2KN.m over the entire span. Find the maximum slope and deflection of the beam. Take EI for the beam as 80 x $109 \mathrm{~N} / \mathrm{mm}^{2}$.
(8 marks)

Question Three (20 marks)

With the aid of a sketch, show that the general differential equation is equal to $\mathrm{M} / \mathrm{EI}=\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}$.
(20 marks)

Question Four (20 marks)

a) State:
i) Mohr's first theorem
ii) Mohr's second theorem
b) Using Mohr's theorem, determine:
i) Maximum slope
ii) Maximum deflection for a simply supported beam of span 4 m with a point load of 6 KN at the centre. Take EI $=4 \times 10^{12} \mathrm{~N} / \mathrm{mm}^{2}$

Question Five (20 marks)

A simply supported beam of span 14.0 m carries two concentrated loads 4 KN at 8 m and 10 KN at 12 m from left as shown in figure 2. Calculate deflection under each load. Take EI $=2.0 \mathrm{X} \mathrm{10}{ }^{14}$.
(20 marks)

C

