THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of Jkuat)

Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
CERTIFICATE IN CONSTRUCTION TECHNICIAN PART II

EBC 1106: THEODOLITE \& TACHEOMETRIC SURVEY

END OF SEMESTER EXAMINATION
SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Pocket calculator
- Pencil \& Eraser

This paper consists of FIVE questions
Answer question ONE and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question 1

a) State the uses of a theodolite
b) Define the following terms as applied in theodolite work;
(i) Vertical axis
(ii) Collimation axis
(iii) Centering
(iv) Face left
(v) Transiting
c) List FOUR permanent adjustment of a theodolite
d) Describe the following horizontal angular measurement methods by use of a theodolite
(i) Repetition
(ii) Reiteration
e) Table 1 shows data obtained during a tacheometric survey. If the multiplying and additive constants were 100 and 0 respectively:

Determine the:-
(i) Horizontal distance between the instrument and the staff station
(ii) Difference in height between the two stations when the instrument is set 1.555 m above the ground

Table 1

Vertical angle	Stadia reading (m)			Horizontal angle
	Top	Middle	Bottom	
$-4^{\circ} 20^{\prime} 30^{\prime \prime}$	2063	1.532	1.000	42

SECTION B (Answer any TWO questions from this section)

Question 2

a) State the functions of the following parts of a theodolite
(i) Centering devices
(ii) Optical plummet
(iii) Lower plate clamp
b) Explain the leveling procedure of a theodolite
c) With the aid of a sketch, derive expressions for the horizontal distance and the difference in height for an inclined sight-to a vertical staff in stadia tacheometry
(10 marks)

Question 3

Shown in table 2 are stadia tacheometric survey observations with the level held vertically. The instruments constants were 100 and 0 . Given the reduced level of the instrument station as 887.000 m , calculate:
(a) Distance AB, AC and BC
(b) The difference in height between AB and AC
(c) The reduced level of point B and C
(d) The difference in height between B and C
(e) Area ABC in hectares

Table 2

Instrumen t station	To statio	Horizontal angle	Vertical angle	Staff readings (m)	Height of instrument
A	B	$06^{\circ} 08^{\prime} 00^{\prime \prime}$	$+5^{\circ} 30^{\prime}$	$1.250,1.500,1.750$	1.60 m
	C	$56^{\circ} 08^{\prime} 00^{\prime \prime}$	$-1^{\circ} 30^{\prime}$	$2.450,3.110,3.775$	1.60 m

(20 marks)

Question 4

a) (i) Define the term tacheometry
(iii) Differentiate between stadia and tangential systems of tacheometry.
(3 marks)
b) Table 3 shows horizontal circle readings about a point. Reduce the angles using angular booking table and illustrate the configuration of the stations on a sketch.

Table 3

Instrumen t at	To point	Face left			Face right		
		-	-	' ،	o	¢	،
Y	P	12	16	00	192	16	20
	Q	43	39	20	223	40	20
	R	141	06	20	321	07	40
	S	207	53	40	27	54	20
	P	12	16	20	192	17	20

c) Describe the collimation error adjustment of a theodolite
(10 marks)

Question 5

a) Describe the procedure to determine tacheometric constants of a theodolite
b) (i) Describe the substense tacheometry
(iii) The readings shown in Table 4 were taken in the measurement of vertical angle.

Calculate the angles

Instrumen t Station	To station	Face left			Face right		
		-	,	، ،	o	,	،
	C	91	40	20	268	39	59
	T	02	29	35	177	31	40

