

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

CONSTRUCTION TECHNICIAN II (CT II 011)

EBC 1104: COLUMNS, STRUTS & COMBINED FORCES

END OF SEMESTER EXAMINATION

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of **FIVE** questions in **TWO** sections: **A** and **B**

Answer question **ONE** is compulsory from Section A and any other **TWO** questions from section B Maximum marks for each question are as shown This paper consists of **FOUR** printed pages

SECTION A – COMPULSORY

Question 1

a) Explain the following:

	(i) (ii) (iii)	Long column Short column Slenderness ratio	(5 marks)
b)	State t	he assumptions of Euler's column theory	(9 marks)
c)	Using	sketches, explain FOUR Euler's end fixing of columns	(16 marks)

SECTION B (Answer any TWO questions)

Question 2

$$P = F_{C}A / \left[+ \frac{fc}{\pi^{2}E} \left(\frac{L}{K} \right)^{2} \right]$$

a) Show that Rankine – Gordon formula for struts

ø

b) A cast iron hollow column haming 8cm external and 6cm internal is used as a column of 2m long. Using Rankine formula, determine the crippling load when ends are fixed. Take $f_c = 600 \text{Kg/cm}^2$, a = 1/1600 (10 marks)

Question 3

a) A rectangular column size 300 x 200 mm thick carries a load of 300KN at an eccentricity of 15mm in the plane bisecting the thickness as shown in figure 1

Find the maximum and minimum intensities of stress in the section (10 marks)

Fig 1.0

(10 marks)

b) A tee section shown in figure 2 is $150 \ge 120 \ge 20$ is used as a strut -4(m) hinged at its both ends. Calculate the crippling load if E = 210KN. (10 marks)

Fig 2.0

120 mm

d = 200

Question 4

A rectangular beam has a prestress of 270 KN at point A as shown in figure 3.

- a) Calculate the stress at the top and bottom surface of the beam due to the thrust only
- b) Determine additional sagging moment to be sustained if no tension is allowed to occur at the bottom surface of the beam
- c) The compressive stress at the top surface under the combined effect of thrust and moment in (b) (20 marks)

Fig 3.0

50 mm

Question 5

A masonry pile of (3 x 4m) supports a vertical load of 30 KN as shown in Fig 4.0

- a) Find the stress developed at each corner of the pile
- b) What additional load should be placed at the centre of the pile so that there is no tensional anywhere on the pile
- c) What are the stresses at the corners with the additional load at the centre (20 marks) Fig 4.0

Х