THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING CONSTRUCTION TECHNICIAN II (CTII 12J)
 EBC 1104: COLUMNS, STRUTS \& COMBINED FORCES
 END OF SEMESTER EXAMINATION

SERIES: APRIL 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Calculator

This paper consists of FIVE questions
Answer any THREE questions
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

Question 1 (20 marks)

a) State the assumptions in Eulers Column Theory
b) A hollow column of 200 mm external diameter and 160 mm internal diameter is used as a column of 4.5 m length. Calculate the Rankine's crippling load when the column is fixed at both ends. Take allowable stress as $350 \mathrm{~N} / \mathrm{mm}^{2}$ and Rankine's constant as $1 / 1600$

Question 2 (20 marks)
a) With the aid of sketch, explain the FOUR types of end connections condition of column
b) A hollow alloy tube 4 m long with external and internal diameters of 40 mm and 25 mm respectively was found to extend 4.8 mm under a tensile load of 60KN.
(i) Find the buckling load for the tube with both ends pinned
(ii) Find the safe load o the tube, taking a factor safety as 5

Question 3 (20 marks)

A T-section in figure $1150 \mathrm{~mm} \times 120 \mathrm{~mm} \times 20 \mathrm{~mm}$ is used as a strut of 4 m long; hinged at its ends. Calculate the crippling load. Take Young's Modulus for material to be $200 \mathrm{KN} / \mathrm{mm}^{2}$

120 mm

Question 4 (20 marks)

a) A rectangular column of size $300 \times 200 \mathrm{~mm}$ carries a load of 300 KN at an eccentricity of 15 mm is a plane bisecting the thickness as shown in figure

Determine the maximum and minimum intensities of stress in the section

Figure 2

b) An I in figure 3 is section $400 \times 200 \times 20 \mathrm{~mm}$ and 6 m long is used as a strut with both ends fixed. Calculate Euler's crippling load for the column.
Take $\mathrm{E}=205 \mathrm{KN} / \mathrm{mm}^{2}$
Figure 3

Question 5 (20 marks)

A masonry pile of $3 \times 4 \mathrm{~m}$ supports a vertical load of 80 KN as shown in figure
Determine:-
a) The stress developed at each corner of the pile
b) Additional load placed at the centre of the pile so that there is no tension on the pile
c) The stresses at the corners with the additional load at the centre
0.5 m

