TECHNICAL UNIVERISTY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY
UNIVERSITY EXAMINATIONS FOR DEGREE IN:
BACHELOR OF TECHNOLOGY IN INFORAMATION TECHNOLOGY (Y1)
EIT 4110: DISCRETE STRUCTURES

END OF SEMESTER EXAMINATION
 SERIES: APRIL 2015
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions.
Attempt question ONE (Compulsory) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) State the meanings of het following symbols:
(i)
(ii) V
ϕ
(iii)
marks)
b) Using examples, show the meaning of the following words as used in set theory:
(i) Singleton
(ii) Doubleton
(iii) Tripleton marks)
c) Write the English meaning of the following expression:
$(x \in\{x ; x$ is tal $\} \leftrightarrow x$ is tall $)$
\forall_{x}
(6 marks)
d) Use a Venn diagram to represent the relationship

$$
A \cap B
$$

e) Let $U=(1,2,3,4,5) \quad S \subseteq U$ be Let 4,5$\}$ Determine $\mathrm{S}^{\text {c }}$

Question Two

a) Which of the following are sets? Assume that a proper universal set has been chosen:

$$
A=\{2,3,5,7,11,13,19\}
$$

(i) $B=\{A, E, I, O, U\}$
(ii)

$$
C=\{\sqrt{x}: x<\phi\}
$$

(iii)

$$
D=\{1,2, A, B, Q, 1, V\}
$$

(iv)
(v) E is a list of all people in your phone book
b) Give Venn diagram representation for the following sets:
(i) $\mathrm{A}-\mathrm{B}$
(ii) $\mathrm{B}-\mathrm{A}$

$$
A^{\subset} \cap B
$$

(iii)
$A \Delta B$
(iv)
$(A \Delta B)^{c}$
(v)
(10 marks)

Question Three

$$
f: N \rightarrow N
$$

a) Suppose is given by:

$$
f(n)=2 n
$$

$$
g: N \rightarrow N
$$

while of is given by:

$$
g(n)=n+4
$$

Determine:

$$
\text { (i) } \begin{aligned}
& (g \circ f)(n) \\
& (f \circ g)(n)
\end{aligned}
$$

(4 marks)
(ii)
b) Determine a, b, c, d in the following truth table

X	Y	X or Y
0	0	a
0	1	b

1	0	C
1	1	d

c) Determine a and b in the following table

X	Not X
0	a
1	b

Question Four

a) Fill in the blanks

a	b	c	$\mathrm{b}^{*} \mathrm{c}$	$\mathrm{a}+\left(\mathrm{b}^{*} \mathrm{c}\right)$	$\mathrm{a}+\mathrm{b}$	$(\mathrm{a}+\mathrm{b})^{*}$	$(\mathrm{a}+\mathrm{b})^{*}(\mathrm{a}+\mathrm{c})$
0	0	0					
0	0	1					
0	1	0					
1	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Question Five

a) Use the properties of Boolean Algebra to prove that:

$$
(a+b)(a+a)=a
$$

b) Convert the following equation to logic gates:
F = a AND NOT (b OR NOT (c))

