TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

SMA 2278: ORDINARY DIFFERENTIAL EQUATIONS

END OF SEMESTER EXAMINATION
 SERIES: AUGUST 2013
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Explain what is meant by the following phrases:
(i) Degree of a differential equation
(1 mark)
(ii) Complete solution of a differential equation
(iii) Exact differential equation

$$
\frac{d y}{d x}=\frac{y^{2}-4}{x}
$$

b) Solve the differential equation
c) An object moves with simple harmonic motion on the x-axis. Initially it is located at a distance 45 m away from the origin when $t=0$ and has velocity $V=13 \mathrm{~m} / \mathrm{s}$ and decelerating at $90 \mathrm{~ms} / \mathrm{s}^{2}$ directed towards the origin 0 . Find the equation of the position at any time t.
(6 marks)
d) Using the D -operator method, find the particular solution for the initial value problem.

$$
y^{\prime \prime-2 y^{\prime}-3 y=0} \quad \text { if } y(0)=0 \text { and } y^{1}(0)=-4
$$

e) Find the power series solution of the differential equation.

$$
\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}+2\right) y=0
$$

in powers of x to determine its general solution.
(9 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) Find the inverse Laplace transform:

$$
\begin{equation*}
f(s)=\frac{3 s+5}{s^{2}-4} \tag{4marks}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}=e^{x} \tag{7marks}
\end{equation*}
$$

b) By reduction of order solve:

$$
\frac{d y}{d x}=\frac{x+y-3}{x-y-1}
$$

c) Solve the linear fractional equation to obtain the general solution.
(9 marks)
Question Three

$$
(x+y) d x+(3 x+3 y-4) d y=0
$$

a) Solve
b) Solve the equation:

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}=5 x
$$

using the method of reduction of order to find the complementary solution and hence the particular solution
(11 marks)

Question Four

$$
\frac{d y}{d x}+y=e^{x}
$$

a) Find the general solution of:

$$
\left(D^{2}+1\right) y=\tan x
$$

b) Find the particular integral of
(4 marks)
(9 marks)
c) The initial temperature of a body is $53^{\circ} \mathrm{C}$ and after 7 minutes its temperature is $43^{\circ} \mathrm{C}$. From Newton's Law of cooling it is known that the rate of cooling of a body is proportional to the temperature difference between the body and its surrounding room temperature. Use this to predict the temperature of the body after a further 7 minutes given that the room temperature was constant at $22^{\circ} \mathrm{C}$.

Question Five

a) Using the D -operator method. Find the general solution to:

$$
\left(D^{2}+3 D-4\right) y=\sin 2 x
$$

b) The velocity of a particle moving along the x -axis is proportional to x . At time $\mathrm{t}=0$ the particle is located at $\mathrm{x}=3$ and at $\mathrm{t}=12 \sec$ it is at $\mathrm{x}=6$. Find x when $\mathrm{t}=4 \mathrm{sec}$

$$
\frac{d x}{d t}-2 x=4
$$

c) Solve

$$
\text { given } t=0 \text { and } x=1
$$

