

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering &

Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR DECREE IN:

BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2415: DESIGN II (RC DESIGN)

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Pocket Calculator

This paper consists of **FIVE** questions. Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions Maximum marks for each part of a question are as shown Use neat, large and well labeled diagrams where required This paper consists of **THREE** printed pages

Question One (Compulsory)

Interior Panel

Figure 1 represents an interior panel of a reinforced concrete floor slab. Concrete cover – 20mm. Concrete $f_{cu} = 40$ N/mm. Factored design load F = 71.3KN/m

Reinforcement

 f_y (main bars) – 460N/mm²

F_{yv} (links) – 250N/mm²

	End	End Span	First Interior	Interior Spans	Interior	
	Support		Support		Support	
Moment	0	0.086FL	-0.086FL	0.063FL	-0.063F	
Shear	0.4F	-	0.6F		0.5F	

Table 1 one-way slabs – ultimate bending moments and shear forces (BS 8110; Cl 3.5.2.4)

Table 1.2 lever arm and neutral axis depth factor

K – m	0.05	0.0	0.0	0.08	0.09	1.0	0.10	0.110	0.119	0.156
$K = \frac{f_{cu}bd^2}{f_{cu}bd^2}$		6	7			0	4			
(z/z)	0.94	0.9	0.9	0.90	0.89	0.8	0.87	0.86	0.84	0.775
\sqrt{d}		3	1			7				
$\left(x/_{z}\right)$	0.13	0.1	0.1	0.22	0.25	0.2	0.30	0.32	0.35	0.50
\'/d'		6	9			9				

Design reinforcement for the panel for the following limit states:

(i) Ultimate

(ii) Shear

(iii) Deflection

(iv)Cracking

Also design for secondary reinforcement

Table 1.3 Basic span/effective depth ratios (BS 8110: Cl 3.4.6.3)

Support Condition	Rectangular Sections
Cantilever	7
Simply supported	20
Continuous	26

Table 1.4 modification factor for tension reinforcement

$\frac{m}{bd^2} \left(N / mm^2 \right)$	0.50	0.75	1.00	1.50	2.00	3.0	4.0	5.0	6.0
	-								
Service stress $f_{y}(N/mm^{2})$									
$f_y = 460$	1.68	1.50	1.38	1.21	1.09	0.95	0.87	0.82	0.70

Question Two

a) Calculate the ultimate axial load of a 250 x 250mm column section having 6 No 12mm diameter bars. (2 marks)

b) Design the longitudinal reinforcement for a 500mm x 300mm column section if N = 2300kN, $M_x = f_{cu} = 40N / mm^2$ $f_{y} = 460N / mm^2$ 300KNm and $M_y = 120$ KNm and

β

Table 2.1 values of (BS 8110: C1.3.8.4.5)

$\frac{N}{f_{cu}}bh$	0	0.1	0.2	0.3	0.4	0.5	≥0.6
β	1.0	0.8	0.7	0.6	0.5	0.4	0.30
	0	8	7	5	3	2	

Question Three

b = 250mmThe design ultimate moment M for a rectangular beam and effective depth (d) = 700mm is $f_{cu} = 40N / mm^2 \qquad f_y = 460N / mm^2$ 860KN/m. If and working from the first principles, design the reinforcement (20 marks)

Question Four

Fig. 4.1 Column footing

Figure 4.1 shows a reinforced concrete footing required to resist characteristic axial loads of 900KN dead and 300KN imposed from a 400mm square column with 16mm dowels. The safe bearing pressure of the soil is 200KN/m² characteristic material strength are $f_{cu} = 40$ N/mm² and $f_y = 460$ N/mm². Design the footing (20 marks)

Question Five

Figure 5.1 shows the cross-section of a pre-stressed reinforced concrete beam.

P = 140 KN

Figure 5.1

- **a)** Determine the stresses due to the prestressing force
- b) If the beam is simply supported at the ends of an 8 metre span and carries a uniformly distributed load of 1.5KN/m, determine the stresses at mid-span. Density of concrete = 24.0KN/m³

(10 marks)