

TECHNICAL UNIVERISTY OF MOMBASA

Faculty of Engineering & Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE/TECHNOLOGY IN INFORMATION TECHNOLOGY (BSITM12/BTIT J13)

EIT 4214/ICS 2311: COMPUTER GRAPHICS

END OF SEMESTER EXAMINATION SERIES: AUGUST 2013 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Attempt question **ONE** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a)	Define the term "Computer Graphics"	(2 marks)
b)	Outline the role played by Open GL in computer graphics	(3 marks)
c)	 Explain the following Open GL terms (i) FLTK (ii) GLUT (iii) BOOST 	(3 marks)
d)	Describe using a diagram, the construction and operation of a coloured CRT monitor	(5 marks)
e)	(i) Define the term polygon clipping.	(2 marks)
	(ii) Write a when-sutherland clipping algorithm a line within a viewpoint	(5 marks)

© 2013 - Technical University of Mombasa

f)	Give TWO	characteristics	of each	of the	following	display devices	:
----	-----------------	-----------------	---------	--------	-----------	-----------------	---

- (i) Plasma
- (ii) LCD's
- (iii) LED's
- g) Define the following terms:
 - (i) Pixel
 - (ii) Vector graphic
 - (iii) Raster image
- (iv) Virtual reality environment (5 marks)
- h) List FOUR applications of computer graphics in industry (4 marks)

Question Two

- a) Explain the Open GL rendering pipeline using diagram (4 marks)
- **b)** State **FOUR** types of Open GL 3D primitives
- c) Illustrate the following computer graphics objects:
 - (i) Bezier
 - (ii) Bezieregon
 - (iii) Polygon
 - (iv) Wireframe

Question Three

a)	Identify THREE standard computer graphics formats that are synonymous with th	e World Wide
	Web.	(3 marks)
b)	Distinguish between RGB color model and the CMVK model clearly stating where	e each may be
	used.	(5 marks)

- **c)** Differentiate with diagrams the following types of camera views:
 - (i)One point perspective(ii)Two point perspective(iii)Isometric view(6 marks)

Question Four

- **a)** Define the following terms:
 - (i) Euclidean space
 - (ii) Parametric surface(iii) Computer aided design
- **b)** Outline **FOUR** advantages of using CAD program over manual drawing. (4 marks)
- c) Describe the following computer graphics transformation techniques. (5 marks)
 - (i) Translation
 - (ii) Rotation
 - (iii) Scaling
 - (iv) Reflection(v) Shear

(5 marks)

(6 marks)

(2 marks)

(8 marks)

d) Describe with a diagram the construction and operation of a cathode ray tube.

Question Five

Rendering is the process of generating an image from a <u>model</u> (or models in what collectively could be called scene file) by means of computer programs. As scene file contains objects in a strictly defined language or data structure, it would contain geometry, viewpoint <u>texture</u>, <u>lighting</u> and <u>shading</u> information as a description of the virtual scene.

The data contained in the scene file is then passed to a rendering program to be processed and output to <u>digital image</u> or <u>raster graphics</u> image file the term "rendering" may be by analogy with an "artist's rendering" of a scene. Though the technical details of rendering methods vary, the general challenges to overcome in producing a 2D image a 3D representation stored in scene file are outlined as the <u>graphics pipeline</u> along rendering device such as <u>GPU</u>.

Many rendering algorithms have been researched, and software used for rendering may employ a number of different techniques to obtain final image. The main ones include rasterizatin <u>scanline</u> rendering, ray tracing and radiosity.

- **a)** Explain the following terms:
 - (i) Lexture mapping
 - (ii) Bump mapping
 - (iii) Refraction
 - (iv) Motion
 - (v) Diffraction
 - (vi) Photo realistic
- **b)** Outline the following rendering techniques:
 - (i) Rasterization
 - (ii) Scanline rendering
 - (iii) Ray tracing
 - (iv) Radiosity

(12 marks)

(8 marks)