

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSISCS

UPGRADING MATHEMATICS

AMA 1104: COMMERCIAL ARITHMETIC & STATISTICS

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

Question One (Compulsory)

- a) Define the following terms as used in Mathematics:
 - (i) A set(1 mark)(ii) A matrix(1 mark)
- **b)** Use Gaussian elimination to solve for the unknowns below:

$x_1 + 2x_2 - 3x_3 = 3$
$2x_1 - x_2 - x_3 = 11$
$3x_1 + 2x_2 + x_3 = -5$

c) Write down all possible integral values of x if:

	-3 < x < 5		
(i)		(1 mai	rk)
	$-2 \le x < 4$		
(ii)		(1 ma	rk)
/···	$0 \le x \le 6$	<i>(</i> 4	•
(m)		(1 ma)	rk)

d) Given that $x_1, x_2 \dots x_n$ is a sample of a given population, show that the sum of squares of the deviations

of a set of data from any number say R is least only when $R - \overline{X} = 0$ where \overline{X} is the arithmetic mean. (4 marks)

- e) A racing car counts five laps of a circuit in a race each lap covered at the following average speeds (in mph). 123.4, 132.8, 125.7, 126.9, 134.9. Find the average speed of the car for the whole race.
 (3 marks)
- f) Given the following data below, find the arithmetic mean using an approximate assumed mean. **(7 marks)**

Class	5-20	21 - 36	37 – 52	53 – 68	69 – 84	85 - 100
Frequenc	6	12	17	11	3	1
у						

g) List any FOUR desirable properties of the mean.

Question Two

a) Given the following sets below:

 $A = \{, 2, 3\} B = \{3\}$ $A \Delta B$

find and represent this on a venn diagram. (5 marks)

$$(A \cup B) \cup C = A \cup (B \cup C)$$

b) Let A, B and C be subsets of the universal set show that

(6 marks)

(4 marks)

(7 marks)

c) Define the term "A frequency polygon" and hence draw the frequency polygon from the following data given below.

Class	10.0 - 15.9	16.0 - 21.9	22.0 - 27.9	28.0 - 33.9
Frequenc	1	3	7	4
у				

d) List FOUR identity laws in set theory.

Question Three

a) The lengths (in mm) of 40 spindles were measured with the following results obtained:

20.9	20.5	20.8	20.7	20.8	20.6	20.5	20.8	20.7	20.6
0	7	6	4	2	3	3	9	5	5
20.7	21.0	20.7	20.4	20.9	20.7	20.7	20.6	21.0	20.8
1	3	2	1	4	5	9	5	8	9
20.5	20.8	20.9	20.7	20.6	20.9	21.0	21.1	20.8	20.7
1	8	7	8	1	2	7	6	0	7
20.8	20.7	20.6	20.9	20.8	20.6	20.7	20.8	20.5	20.9
2	2	0	0	6	8	5	8	6	4

Represent this data on a frequency distribution table taking a class interval of 0.10 (8 marks)

- **b)** During a tournament the probabilities of Mirithu girls winning volleyball, netball and hockey were:
 - 2/3, 1/5, 3/5 respectively.

At the end of the tournament	what was	the probability	that Mirithu girls:
		1 2	0

	(i)	Doesn't lose at least one game	(1 mark)
	(ii)	Wins at least one game	(2 marks)
	(iii)	Wins two games	(3 marks)
c)	Define	e the following terms as used in probability:	
	(i)	Dependant events	(1 mark)
	(ii)	Random variable	(1 mark)
d)	List FC	OUR steps involved in a statistical exercise.	(4 marks)

Question Four

a) Define the term "A power set" and hence form the power set from the given subset below: $A = \{12 \ 3\}$

(4 marks)

(5 marks) (4 marks)

b) Differentiate between symmetric and skew-symmetric matrices and give one example of each. (4 marks)

c) d)	$A = \begin{pmatrix} 4 & 2 & 6 \\ 1 & 8 & 7 \end{pmatrix}$ Given that determine: (i) A^{T} (ii) $A A^{T}$ $A = \begin{pmatrix} 2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0 \end{pmatrix}$ Given that Determine:	(1 mark) (2 marks)
	A (i)	(1 mark)
	(ii) A ⁻¹	(6 marks)
e)	Given that matrix B is of order p x q, C is of order mxn. Predict the order of B.C	(2 marks)
Qu	iestion Five	
a)	List FOUR advantages of the median.	(4 marks)
b)	$4-3x \le 10$ Solve the following inequality and illustrate the solution on a number line	
c)	Draw a graph to represent:	(4 marks)
,	(i) $1 \le y < 5$	(2 marks)
	(ii)	(2 marks)
d)	$\cup = \{2 \ 4 \ 6 \ 8 \ 10 \ 12 \ 14 \ 16\}, \ A = (2 \ 6 \ 10 \ 16)$ Given that find A' and represent the solution diagram.	on on an Argand (4 marks)
e)	Compute the standard deviation of the following data:	
[Class 0-10 10-20 20-30 30-40 40-50	

(4 marks)

7

6

15

12

10

No of students