

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
UPGRADING MATHEMATICS

AMA 1104: COMMERCIAL ARITHMETIC \& STATISTICS

END OF SEMESTER EXAMINATION
SERIES: APRIL 2014

TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) Define the following terms as used in Mathematics:
(i) A set
(1 mark)
(ii) A matrix
b) Use Gaussian elimination to solve for the unknowns below:

$$
\begin{aligned}
& x_{1}+2 x_{2}-3 x_{3}=3 \\
& 2 x_{1}-x_{2}-x_{3}=11 \\
& 3 x_{1}+2 x_{2}+x_{3}=-5
\end{aligned}
$$

(7 marks)
c) Write down all possible integral values of x if:

$$
-3<x<5
$$

(i)

$$
-2 \leq x<4
$$

(ii)
$0 \leq x \leq 6$
(iii)
(1 mark)
(1 mark)
(1 mark)
d) Given that $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$ is a sample of a given population, show that the sum of squares of the deviations

$$
R-\bar{X}=0 \quad \bar{X}
$$

of a set of data from any number say R is least only when where is the arithmetic mean.
(4 marks)
e) A racing car counts five laps of a circuit in a race each lap covered at the following average speeds (in $\mathrm{mph}) .123 .4,132.8,125.7,126.9,134.9$. Find the average speed of the car for the whole race.
(3 marks)
f) Given the following data below, find the arithmetic mean using an approximate assumed mean.

(7 marks)						
Class y	$5-20$	$21-36$	$37-52$	$53-68$	$69-84$	$85-100$

g) List any FOUR desirable properties of the mean.
(4 marks)

Question Two

a) Given the following sets below:

$$
A=\{, 2,3\} B=\{3\} \quad A \Delta B \text { and represent this on a venn diagram. }
$$

$\cup \quad(A \cup B) \cup C=A \cup(B \cup C)$
b) Let A, B and C be subsets of the universal set show that
c) Define the term "A frequency polygon" and hence draw the frequency polygon from the following data given below.

Class	$10.0-15.9$	$16.0-21.9$	$22.0-27.9$	$28.0-33.9$
Frequenc y	1	3	7	4

d) List FOUR identity laws in set theory.

Question Three

a) The lengths (in mm) of 40 spindles were measured with the following results obtained:

20.9	20.5	20.8	20.7	20.8	20.6	20.5	20.8	20.7	20.6
0	7	6	4	2	3	3	9	5	5
20.7	21.0	20.7	20.4	20.9	20.7	20.7	20.6	21.0	20.8
1	3	2	1	4	5	9	5	8	9
20.5	20.8	20.9	20.7	20.6	20.9	21.0	21.1	20.8	20.7
1	8	7	8	1	2	7	6	0	7
20.8	20.7	20.6	20.9	20.8	20.6	20.7	20.8	20.5	20.9
2	2	0	0	6	8	5	8	6	4

Represent this data on a frequency distribution table taking a class interval of 0.10
(8 marks)
b) During a tournament the probabilities of Mirithu girls winning volleyball, netball and hockey were:

2/3, 1/5, $3 / 5$ respectively.
At the end of the tournament what was the probability that Mirithu girls:
(i) Doesn't lose at least one game
(1 mark)
(ii) Wins at least one game
(iii) Wins two games
c) Define the following terms as used in probability:
(i) Dependant events
(1 mark)
(ii) Random variable
d) List FOUR steps involved in a statistical exercise.

Question Four

a) Define the term "A power set" and hence form the power set from the given subset below:

$$
A=\left\{\begin{array}{ll}
12 & 3
\end{array}\right\}
$$

b) Differentiate between symmetric and skew-symmetric matrices and give one example of each.

$$
A=\left(\begin{array}{lll}
4 & 2 & 6 \\
1 & 8 & 7
\end{array}\right)
$$

c) Given that
determine:
(i) A^{T}
(ii) $\mathrm{A} \cdot \mathrm{A}^{\mathrm{T}}$

$$
A=\left(\begin{array}{lll}
2 & 3 & 5 \\
4 & 1 & 6 \\
1 & 4 & 0
\end{array}\right)
$$

d) Given that

Determine:
$|A|$
(i)
A^{-1}
(ii)
e) Given that matrix B is of order pxq, C is of order mxn. Predict the order of B.C

Question Five

a) List FOUR advantages of the median.
(4 marks)

$$
4-3 x \leq 10
$$

b) Solve the following inequality and illustrate the solution on a number line
c) Draw a graph to represent:
$-2<x \leq 2$
(i)
(2 marks)
(ii)

$$
\begin{equation*}
\cup=\{246810121416\}, A=(261016) \tag{2marks}
\end{equation*}
$$

d) Given that find A' and represent the solution on an Argand diagram.
e) Compute the standard deviation of the following data:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No of students	7	6	15	12	10

