

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UPGRADING MATHEMATICS (UMTH 13S)

AMA 1104: COMMERCIAL ARITHMETIC & STATISTICS

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this

You should have the following for this examination - Mathematical tables

- Scientific Calculator

This paper consist of **FIVE** questions

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown

Question One (Compulsory)

a)	Define (i) (ii)	e the following terms as used in Mathematics: Skew symmetric matrix Data	(1 mark) (1 mark)
b)	Illustra	ate the following inequalities on a number line:	
		<i>x</i> ≤ 3	
	(i)		(2 marks)
		$1 \le x < 6$	
	(ii)		(2 marks)
c)	State v	whether each of the following is a discrete or continuous variable:	
	(i)	The number of lecturers in a university	(1 mark)
	(ii)	The capacity of a container	(1 mark)
	(iii)	The size of non-teaching staff in a school	(1 mark)
	(iv)	The speed of rotation of a shaft	(1 mark)
	(v)	The temperature of a coolant	(1 mark)

d) A machine is set to produce metal washers of nominal diameter 20.0mm. The diameters of 34 samples are measured and the following results in mm obtained.

19.9	19.9	19.6	19.8	19.8	19.7	19.9	19.8	19.6
0	7	1	2	6	5	6	2	3
19.8	19.8	19.6	19.9	19.7	20.0	19.5	20.1	19.8
7	7	8	6	2	5	6	6	9
	19.7	19.7	19.7		19.8	20.0	19.9	19.7
	5	8	7	19.8	6	3	3	3
	20.0	19.8	20.0	20.1	20.0	19.9	19.7	19.6
	7	4	1	1	0	9	7	6

Arrange the values above in classes of width 0.10mm in a frequency distribution table (**7 marks**) And hence find the following:

- (i) The lower class boundary of the third class
- (ii) The upper class boundary of the seventh class
- (iii) The central value of the fifth class
- e) Fifteen percent of castings are found to be outside prescribed tolerance. Determine the number of acceptable items likely to be present in a batch of 120 such castings. (3 marks)
- f) Given the following sets below.

 $A = \{1, 2, 3\}, B = \{3\}$

 $A\Delta B$

Find and represent this on a Venn diagram

(1 mark)

(6 marks)

Question Two

b) Given the following sets: $(A \cap B) = A' \cup B'$ $A = \{2 \ 4 \ 6\}, B = \{2 \ 6 \ 10 \ 14\}$ show that (6 marks) $(A \cup B) \cup C = A \cup (B \cup C)$ in set theory c) Show that (6 marks)

 $X_1, X_2, ..., X_n$ is a sample of a given population. Show 1that the sum of squares of the **d)** Given that $B - \overline{X} = 0$ X deviations of a set of data from any number say B is least only when where is the arithmetic mean. (4 marks)

Question Three

a) Show that the variance of a set of data can also be expressed as:

$$\operatorname{var}(x) = \frac{1}{n} \sum_{i=1}^{n} x^{2} - \overline{X}^{2}$$

a) Name any FOUR identity laws in set theory.

b) Calculate the standard deviation from the following distribution:

Marks	0-10	10 - 20	20-30	30 - 40	40 - 50
No. of Students	7	6	15	12	10

- c) State the FOUR steps that a statistical exercise consists of:
- **d)** Display the following data on a pie chart:

Department	Science	Business	Forestry
No. of Students	642	820	317

(3 marks)

Question Four

a) Define the term 'A frequency polygon' and hence draw a frequency polygon using the following data.

Class	10.0 – 15.9	16.0 - 21.9	22.0 - 27.9	28.0 - 33.9
Frequency	1	3	7	4

(6 marks)

- **b)** State any THREE uses of an ogive curve
- c) Find the mean of the following data using an appropriate assumed mean.

Class	5 – 20	21 – 36	37 – 52	53 – 68	69 - 84	85 - 100
						·

(7 marks)

(6 marks)

(4 marks)

(3 marks)

Page 3

(4 marks)

	Frequency	6	12	17	11	3	1	
							(7	marks)
d) Solv	e the following ineq x+1 < 3 < 5 + x	ualities:						
(i)	$\frac{2}{3}x - \frac{4}{5} < \frac{1}{2}$	$-\frac{1}{4}x$					(2	marks)
(ii)	, , , , , , , , , , , , , , , , , , , ,						(2	marks)

Question Five

a)	Define	e the following terms as used in matrices:	
	(i)	Double suffix notation	(2 marks)
	(ii)	Null matrix	(1 mark)

b) Solve for the unknowns in the following set of equations below using Gaussian reduction method. x = 4x = 2x = 21

$x_1 - 4x_2 - 2x_3 = 21$	
$2x_1 + x_2 + 2x_3 = 3$	
$3x_1 + 2x_2 - x_3 = -2$	

c) Given that matrix A is of order mxn, B is of order p x q C is of order r x s. Predict the order of the following:

	(i)	A·D					(1 mark)	
	(ii)	$A \cdot B^2$					(2 marks)	
			(2	3	5			
		A =	4	1	6			
		<i>A</i> =	$\left(1\right)$	4	0			
d)	Given					. Find the determinant of the above matrix.	(2 marks)	
	And h	(5 marks)						

(7 marks)