

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MATHEMATICS & COMPUTER SCIENCE

AMA 4214: CLASSICAL MECHANICS

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
 - Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a) Show that the path taken by a projectile is parabolic and give values for constants b and c.

b) State the THREE Newtons' Laws of motion.

(6 marks) (5 marks)

- r = r(t) = xi + yi + zk
- c) If the position vector of an automobile is given by its instantaneous velocity, instantaneous acceleration and speed?. What would be the values of (3 marks)
- **d)** Derive the THREE equations of linear motion.

(5 marks)

e) Find the kinetic energy of a particle of mass 40 units moving with a velocity V = 6i - 10j + 8k.

(3 marks)

f) An object of mass 0.25kg on the end of a string is whirled in a vertical circle of radius 2m with a constant speed of 20m/s. What are the maximum and minimum tensions in the string.

(4 marks)

(5 marks)

(5 marks)

(5 marks)

 $r = 2ti = t^2 i \pm (3t^2 = At)k$

find the magnitude and direction cosine of the vector

g) Calculate the speed at which a plane must be flying when looping the loop of radius 0.80km so that the pilot feels no force from either his harness or his seat. (4 marks)

Question Two

θ

A projectile is launched with an initial speed of um/s and at an angle to the horizontal. Determine:

- (i) Time it takes to reach highest point. (5 marks)
- (ii) The highest point reached.
- (iii) Time of flight back to Earth. Comment.
- (iv) Range

Question Three

								$r_1 - 2n$	i j i (Si	πųπ	
a)	Two	particles	have	position	vectors	given	by:				and
	$r_2 = (5t)$	$(1^{2}-12t+4)i$	$+t^{3}j -$	3tk							

Find:

- (i) Relative velocity of the 2^{nd} particle with respect to the first one at the instant where t = 2 units. **(5 marks)**
- (ii) Relative acceleration of the first particle with respect to the second one at the instant where t = 2 units.
 (5 marks)

 $\vec{A} = i + 2j - 2k$ $\vec{B} = 2i + j + k$ $\vec{C} = i - 3j - 2k$

b) If

 $\vec{R} = \vec{A} + \vec{B} + \vec{C}$

(5 marks)

c) A 5.0kg mass moves on a smooth horizontal surface under the action of a horizontal force given by $F = 80 + 10t^2$

. Determine the velocity of the mass at t = 3.0s if it was at the origin at t = 0s. **(5 marks)**

Question Four

$$\overrightarrow{r} = a \cos wti + b \sin wtj$$

- a) A particle of mass m moves on a path by the equation and angular momentum about the origin. . Calculate the torque (6 marks)
- b) A grind stone weighing 40kg has a radius of 1.2m starting from rest it acquires a speed of 150 revolutions. In 12 seconds calculate the torque acting on it. (6 marks)

c) A circular disc of a mass m and radius r is set rolling on a table. If w is the angular velocity, show that

 $\frac{3}{4}Mr^2w^2$

its total energy is given by

d) When is a force field said to be conservative.

(6 marks)

(2 marks)

Question Five

A ball is fired at a speed of 25.0m/s from ground level at an angle of 30.0° above the horizontal. Ignoring air resistance use kinematics in two dimensions to solve.

a) The minimum speed of the ball while it is in the air.	(4 marks)
b) How far does the ball travel	(6 marks)
c) When does the speed of the ball equal 22.5m/s	(4 marks)
d) What is the balls height when it has travelled 41m	(6 marks)