

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MATHEMATICS \& COMPUTER SCIENCE

AMA 4214: CLASSICAL MECHANICS

END OF SEMESTER EXAMINATION
 SERIES: APRIL 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Show that the path taken by a projectile is parabolic and give values for constants b and c .
b) State the THREE Newtons' Laws of motion.

$$
r=r(t)=x i+y i+z k
$$

c) If the position vector of an automobile is given by its instantaneous velocity, instantaneous acceleration and speed? . What would be the values of (3 marks)
d) Derive the THREE equations of linear motion.
e) Find the kinetic energy of a particle of mass 40 units moving with a velocity $V=6 i-10 j+8 k$.
(3 marks)
f) An object of mass 0.25 kg on the end of a string is whirled in a vertical circle of radius 2 m with a constant speed of $20 \mathrm{~m} / \mathrm{s}$. What are the maximum and minimum tensions in the string.
(4 marks)
g) Calculate the speed at which a plane must be flying when looping the loop of radius 0.80 km so that the pilot feels no force from either his harness or his seat.
(4 marks)

Question Two

θ
A projectile is launched with an initial speed of um/s and at an angle to the horizontal. Determine:
(i) Time it takes to reach highest point.
(ii) The highest point reached.
(iii) Time of flight back to Earth. Comment.
(iv) Range

Question Three

a) Two particles have position vectors given by: and $r_{2}=\left(5 t^{2}-12 t+4\right) i+t^{3} j-3 t k$

Find:
(i) Relative velocity of the $2^{\text {nd }}$ particle with respect to the first one at the instant where $t=2$ units.
(ii) Relative acceleration of the first particle with respect to the second one at the instant where $\mathrm{t}=$ 2 units.
(5 marks)

$$
\vec{A}=i+2 j-2 k \quad \vec{B}=2 i+j+k \quad \vec{C}=i-3 j-2 k
$$

b) If find the magnitude and direction cosine of the vector $\vec{R}=\vec{A}+\vec{B}+\vec{C}$
c) A 5.0 kg mass moves on a smooth horizontal surface under the action of a horizontal force given by $F=80+10 t^{2}$
. Determine the velocity of the mass at $\mathrm{t}=3.0 \mathrm{~s}$ if it was at the origin at $\mathrm{t}=0 \mathrm{~s}$.
(5 marks)

Question Four

$$
\vec{r}=a \cos w t i+b \sin w t j
$$

a) A particle of mass moves on a path by the equation . Calculate the torque and angular momentum about the origin.
(6 marks)
b) A grind stone weighing 40 kg has a radius of 1.2 m starting from rest it acquires a speed of 150 revolutions. In 12 seconds calculate the torque acting on it.
(6 marks)
c) A circular disc of a mass m and radius r is set rolling on a table. If w is the angular velocity, show that

$$
3 / 4 M r^{2} w^{2}
$$

its total energy is given by
d) When is a force field said to be conservative.

Question Five

A ball is fired at a speed of $25.0 \mathrm{~m} / \mathrm{s}$ from ground level at an angle of 30.0° above the horizontal. Ignoring air resistance use kinematics in two dimensions to solve.
a) The minimum speed of the ball while it is in the air.
b) How far does the ball travel
c) When does the speed of the ball equal $22.5 \mathrm{~m} / \mathrm{s}$
d) What is the balls height when it has travelled 41m
(4 marks)
(6 marks)
(4 marks)
(6 marks)

