TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
\section*{BACHELOR OF SCIENCE IN MATHEMATICS \& COMPUTER SCIENCE}
(BMCS 13S)

AMA 4214: CLASSICAL MECHANICS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: JUNE 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

a) Define the terms:
(i) Displacement
(ii) Velocity
b) Illustrate on a distance-time graph and a velocity time for:
(i) A body moving with uniform velocity
(ii) Motion of a body thrown vertically upwards
c) Derive the THREE equations of linear motion
d) Find the Tension in a string when an object of mass 0.5 kg is whirled in a horizontal circle of radius 2 m with a constant speed of $10 \mathrm{~m} / \mathrm{s}$
e) Show that Power = Force x Velocity
(5 marks)
f) Find the kinetic energy of a particle of mass 20 units moving with a velocity $v=3 i-5 j+4 k$
(3 marks)
g) A particle moves a long a curve whose parametric equations are $x=3 e-2 t, y=4 \sin 3 t$ and $z=5 \cos ^{3} t$ where t is the time. Find the velocity and acceleration of the particle at any given time t

Question Two

a) A ball of mass 0.1 kg is thrown vertically upwards with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. Calculate:
(i) The time taken to return to the thrower
(4 marks)
(ii) The maximum height attained
(iii) The kinetic energy of the ball half way up
(4 marks)
(iv) The potential energy of the ball half way up
(2 marks)
b) A body having mass 0.5 kg at the end of a string is whirled in a horizontal circle radius 2 m at a constant speed of $10 \mathrm{~m} / \mathrm{s}$. Calculate the maximum and the minimum Tension experienced by the body
(7 marks)

Question Three

$$
r_{1}=2 t i-t^{2} j+(3 t 2-4 t) k \quad r_{2}=\left(5 t^{2}-12 t+4\right) i+t^{3} j-3 t k
$$

a) Two particles have position vectors and
Find:
(i) Relative velocity
(6 marks)
(ii) Relative acceleration of the $2^{\text {nd }}$ particle with respect to the first at the instant where $t=1$
(6 marks)
b) Calculate the speed at which a plane must be flying when looping the loop of radius 0.80 km so that the pilot feels no force from either his harness or his seat
(5 marks)
c) A car of mass $1 \times 10^{3} \mathrm{~kg}$ travelling at $72 \mathrm{~km} / \mathrm{h}$ on a horizontal road is brought to rest a distance of 40 m by the action brakes and frictional forces. Find the average braking force
(3 marks)

Question Four

θ
A projectile is launched with an initial speed of $u m / s$ and at an angle to the horizontal. Determine:
a) Time it takes to reach the highest point
b) The highest point reached
c) Time of flight back to earth
d) Range
e) Prove that the Range of the projectile is maximum when

Question Five

a) Show that the total linear momentum of a system of particles A and B, travelling in opposite directions is constant
b) A particle of constant mass m moves in space under the influence of a force field F. Assuming that at time t_{1} and t_{2}, the velocities of the particle are v_{1} and v_{2} respectively. Show that the work done by the particle is equal to the change in kinetic energy i.e.

$$
\int_{t_{1}}^{t_{2}} F . d r=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}
$$

(8 marks)

c) Prove that if F is a force acting on a particle and v is the velocity of the particle then the power applied to the particle is given by $\mathrm{P}=\mathrm{F} . \mathrm{V}$

